다항식의 나머지 정리![]() ![]() 대수학에서 (다항식) 나머지 정리((多項式)-定理, 영어: (polynomial) remainder theorem) 또는 베주의 소정리(영어: Little Bézout's theorem, 프랑스의 수학자인 에티엔 베주에서 이름을 따옴)[1]는 다항식을 1차 다항식으로 나눈 나머지를 구하는 정리이다. 대략 다항식 를 1차 다항식 로 나눈 나머지가 라고 말한다. 나눗셈 정리의 따름정리이며 인수 정리를 특수한 경우로 포함한다. 후자에 따르면 는 인 경우에만 의 약수이다.[2] 여러 개의 근을 갖는 다항식은 인수 정리를 반복적으로 적용하여 인수분해 할 수 있다.[3] 정의가환환 및 다항식 및 가 주어졌다고 하자. 나머지 정리에 따르면, 다항식 를 다항식 로 나눈 나머지는 이다. 더 일반적으로, 환 및 다항식 및 환의 중심의 원소 가 주어졌다고 하자. 나머지 정리에 따르면, 다항식 를 다항식 로 나눈 나머지는 이다. 증명나눗셈 정리를 통한 증명: 테일러 전개를 통한 증명: 인수 분해를 통한 증명: 가 의 배수임을 보이면 된다. 는 꼴의 다항식들의 -선형 결합이므로 의 배수가 맞다. 예다항식 에서 으로 나눈 몫과 나머지는 각각 과 이다. 따라서 이다. 응용나머지 정리에 따라, 는 를 로 나누는 조립제법을 통해 계산할 수 있다. 함수에의 대입은 직접 계산하는 것보다 조립제법을 사용하는 방법이 계산의 대가가 더 적다. 인수 정리는 나머지 정리에서 인 특수한 경우이다. 참고 문헌
외부 링크
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia