단순 가군환론에서 단순 가군(單純加群, 영어: simple module)은 그 부분가군이 자신 또는 0밖에 없는 가군이다. 즉, 0이 아닌 원소 하나만으로 생성되는 부분가군이 항상 전체 가군과 같은 경우다. 정의환 의 오른쪽 가군 에 대하여, 다음 조건들이 서로 동치이며, 이를 만족시키는 오른쪽 가군 을 단순 오른쪽 가군(영어: simple right module)이라고 한다.
왼쪽 가군에 대해서도 마찬가지 정의를 내릴 수 있다. 기약 표현군 표현은 체를 계수로 하는 군환에 대한 가군이다. 즉, 가 군이고, 가 체 에 대한 벡터 공간이라면, 표현 는 군환 에 대한 가군과 같다. 이 경우, 가군으로서 단순 가군인 군 표현을 기약 표현(irreducible representation)이라고 한다. 즉, 기약표현은 (자신 또는 0차원 표현을 제외한) 부분표현을 가지지 않는 표현이다. 예영가군은 정의에 따라 단순 가군이 아니다. 외부 링크
같이 보기 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia