디리클레 등차수열 정리수론에서 디리클레 등차수열 정리(Dirichlet等差數列定理, 영어: Dirichlet’s theorem on arithmetic progressions)는 첫 수와 항들의 차가 서로소인 등차수열에 무한히 많은 소수들이 포함되어 있다는 정리다. 정의와 가 서로소인 양의 정수라고 하자. 디리클레 등차수열 정리에 따르면, 등차수열 에는 무한히 많은 소수가 포함되어 있다. 즉, 무한히 많은 소수들을 의 꼴로 나타낼 수 있다. 또한, 이 수열에 포함된 소수들의 역수들의 합은 발산한다. 예대표적인 등차수열에 포함된 소수들은 다음과 같다.
역사레온하르트 오일러는 1로 시작하는 모든 등차수열에 대하여 이 정리를 추측하였고, 아드리앵마리 르장드르가 이 추측을 임의의 등차수열로 일반화하였다. 페터 구스타프 르죈 디리클레가 1837년 이 정리를 증명하였다.[1][2] 이를 증명하기 위하여 디리클레는 수론에 해석학적인 기법을 도입하였다. 이는 해석적 수론의 시초로 여겨진다. 1946년에 아틀레 셀베르그가 초등적인 증명을 발표하였다.[3] 같이 보기각주
외부 링크
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia