딜라톤딜라톤(영어: dilaton) 또는 늘임자는 입자물리학에서 칼루자-클라인 등의 축소화되는 여분 차원을 가정하는 이론에서 여분 차원의 부피가 변량일 경우 등장하는 스칼라 입자이다. 전개구체적으로, 일반 상대성 이론에서 시간 차원은 그대로 두고 공간 차원을 3+d 차원으로 확장하고, d가 축소화된 차원이라고 가정하자. 그리고 다음의 계량 을 생각하자. 이 때 확장된 힐베르트 작용 (물질 부분은 생략) 을 d차원에 대해 우선 적분하여 축소화하면 가 된다. 이것을 다시 규격화하면 축소화되지 않은 부분의 등각 변환을 으로 적을 수 있다. 여기서 축소화되는 차원의 크기와 관계 있는 를 다시 규격화하여 등으로 쓴 것이 스칼라장인 딜라톤이다.[1] 여기서 는 플랑크 질량이다. 이것들을 활용하여 위의 작용을 다시 쓰면, 이 되어 가 스칼라장으로 행동한다는 것을 알 수 있다. 우주론적으로, 딜라톤은 브랜스-딕 이론의 스칼라장처럼 행동하나, 임의의 퍼텐셜을 가질 수 있어 좀 더 일반적이다. 끈이론에서의 딜라톤닫힌 보손 끈 이론에서는 중력자와 캘브-라몽 장과 함께 3종의 무질량 입자 가운데 하나이다. 또한 모든 종류의 초끈이론에서도 존재한다. M이론에서는 축소화 이전에는 존재하지 않는다. 딜라톤의 진공 기댓값은 끈 이론의 결합 상수를 결정한다. 예를 들어 닫힌 끈의 결합 상수는 딜라톤장 에 대하여 이다. 즉 끈 결합 상수는 통상적인 양자장론과 달리 기본 상수가 아니라 동적으로 결정되는 값이다. 같이 보기각주
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia