라그랑지언라그랑주 역학에서 라그랑지언(Lagrangian)이란 계의 동역학을 나타내는 함수다. 라그랑주 역학에서는 계의 상태를 일반화 좌표와 일반화 속도로 나타내므로, 라그랑지언은 일반화 좌표와 일반화 속도의 함수다. 수학자 조제프루이 라그랑주가 도입하였다. 기호는 대개 L이다. 라그랑주 역학과 뉴턴 역학은 서로 동등하지만, 라그랑주 역학에서는 직교좌표계 뿐만 아니라 임의의 좌표계 (구면좌표계, 원통좌표계 뿐만 아니라 3차원 현실 세계와 전혀 연관되지 않은 추상적인 일반화 좌표계)를 사용할 수 있어 편리하다. 고전역학에서의 라그랑지언고전역학에서의 라그랑지언은 계의 운동에너지 T에서 위치에너지 V를 뺀 것으로 정의된다. 라그랑지언을 알면 이를 오일러-라그랑주 방정식에 대입하여 운동방정식을 얻을 수 있다. 라그랑지언의 유일성어떤 운동방정식을 주는 라그랑지언은 유일하지 않다. 예를 들어, 고전역학의 라그랑지언 와 다음과 같은 좌표와 시간만의 임의의 함수 의 시간에 대한 전미분을 포함하는 라그랑지언 을 비교해보자. 두 이들이 주는 작용의 차이는 이므로 만큼 차이가 난다. 하지만 이는 상수이므로 여기에 변분을 취하면 가 되어 최종적으로 다음과 같은 오일러-라그랑주 방정식을 얻게 되며 두 라그랑지언에 의해 얻게 되는 운동방정식은 같게 된다. 일반적으로, 라그랑지언이 어떤 임의의 함수의 전미분만큼 달라도 같은 오일러-라그랑주 방정식을 얻는다. 같이 보기 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia