리만-르베그 보조정리리만-르베그 보조정리(Riemann-Lebesgue lemma, -補助定理)는 조화해석학과 점근해석학, 푸리에 해석학 등에서 취급되는 수학 정리로, 독일의 수학자 베른하르트 리만과 프랑스 수학자 앙리 르베그의 이름이 붙어 있다. 간단히 말해, 이 보조정리는 L1 공간에 속하는 어떤 함수의 푸리에 변환이나 라플라스 변환은 무한대에서 0으로 수렴한다는 내용을 담고 있다. 공식화함수 f:R→C에 대하여, f ∈ L1 이라면 다음이 성립한다.
같은 조건의 함수를 라플라스 변환한 것에 대해서도 성립한다. 이 경우에는 보다 광범위한 결과를 얻는다.
또한, 이는 n차원 푸리에 변환에 대해서도 성립한다. 즉, f ∈ 에 대하여,[1] 각주
참고 문헌
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia