마스터 정리알고리즘 분석에서 The Master Method(마스터 방법, 만능 방법), Master Theorem(마스터 정리)는 재귀 관계식으로 표현한 알고리즘의 동작 시간을 점근적으로 계산하여 간단하게 계산하는 방법이다. 잘 알려진 알고리즘 교과서 Introduction to Algorithms의 4.3절과 4.4절, 4.5절에 설명되어 유명해졌으나, 이 방법이 모든 재귀 관계식을 풀 수 있는 건 아니다. 다음과 같은 관계식이 주어졌다고 하자. 여기서 이고 은 점근적으로 양수 함수값을 가지는 함수이다. 이때 다음과 같은 경우에 대해 점근적 수행 시간을 계산할 수 있다.
외부 링크
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia