메르텐스 정리 (수론)정수론에서 메르텐스 정리(Mertens' theorems)는 독일 수학자 프란츠 메르텐스(Franz Mertens)가 1874년에 제출한 정리로서, 소수의 밀도에 관한 해석적 수론의 초기 결과이다. 다음과 같은 세 가지 형식이 있다.(메르텐스의 제2정리의 경우, 레온하르트 오일러는 이미 소수의 역수의 합이 발산함을 복소해석적 기법으로 증명한 적이 있다[1]) 소수 정리가 이미 증명된 지금은 메르텐스의 제1정리와 제2정리의 수렴성은 소수 정리로부터 직접적으로 유도가 가능하다. 메르텐스의 제1정리를 소수라 하면, 다음 등식이 성립한다: 이 수렴값은 약 (OEIS,A083343)이다.[2] 메르텐스의 제2정리를 소수라 하면, 다음 등식이 성립한다: 이 수렴값()을 마이셀-메르텐스 상수(Meissel–Mertens constant)라 한다. 약간의 대수학적 변형을 이용하면 이것과 유명한 오일러-마스케로니 상수 와의 다음과 같은 관계식을 도출할 수도 있다. 메르텐스의 제3정리
이것은 제타 함수와 관계가 있는 유명한 식이다.
같이 보기각주
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia