바빌로니아 법![]() 바빌로니아 법(The Babylonian Method)은 임의의 수의 제곱근에 빠르게 수렴하는 수열을 만들어 근삿값을 구하는 방법이다. 뉴턴랩슨 법을 이용하여 이차방정식의 근사해를 구하는 것과 유사하다. 헤론의 저서에서 바빌로니아 법과 비슷한 형태의 풀이가 제시되었기 때문에 바빌로니아 법을 헤론의 제곱근 풀이법이라고 하기도 한다. 양의 실수 에 대하여 다음 과정을 따라 의 근삿값을 구할 수 있다.
위에서 구한 수열 에서 각 항은 이전 항에 비해 소수점 아래로 두 배의 유효 수치를 갖는 것으로 알려져 있으며, 를 만족한다. 다음은 로 시작하여 위의 방법에 따라 의 근삿값을 구한 것이다. 는 의 참값과 소수점 아래 23자리까지 일치한다. |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia