베타 함수해석학에서 베타 함수(Β函數, 영어: beta function)는 감마 함수의 비로 나타내어지는 2변수 특수 함수이다. 이항계수의 해석적 연속으로 생각할 수 있다. 정의베타 함수 는 다음과 같다. 이때 x와 y는 실수부가 0보다 큰 복소수이다. 감마 함수와 함께 오일러 적분(Euler integral)으로 부르기도 한다. 감마 함수가 계승 (수학)을 일반화한 것으로 생각할 수 있는 것처럼, 베타함수는 이항계수의 일반화로 생각할 수 있다. 성질응용끈이론의 탄생에 큰 기여를 했다. 베타함수는 강력을 기술하는 방정식으로 사용되기도 한다.[출처 필요] 같이 보기외부 링크
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia