뷔퐁의 바늘![]() 뷔퐁의 바늘(프랑스어: L'aiguille de Buffon)은 18세기에 뷔퐁 백작이 처음 제기한 문제이다.[1] 뷔퐁의 바늘은 최초의 기하확률론 문제이다. 적분기하를 이용해 풀 수 있으며, 바늘의 길이가 널빤의 너비보다 크지 않을 때, 몬테카를로 방법을 사용하면 원주율을 근사할 수 있다. 다만 이것은 뷔퐁이 본래 의도한 결과는 아니었다.[2] 풀이문제를 보다 수학적인 용어로 다시 풀면 이렇다.
바늘 가운데에서 가장 가까운 평행선까지의 거리를 라 하고, 바늘과 평행선들이 이루는 각도를 로 정의한다. 범위 의 균등확률분포함수는 범위 의 균등확률분포함수는 고로 바늘이 선을 가로지를 조건은 다음과 같다. 그리고 결과는 조건에 따라 두 가지로 나뉜다. 짧은 바늘일 때, 결합확률분포함수를 적분하면 이 결과는 "뷔퐁의 국수"를 이용해서 도출할 수도 있다. 긴 바늘일 때, 결합확률분포함수를 적분하면 이때 은 범위 의 최솟값이다. 상기 적분을 수행하면 일 때, 바늘이 선을 가로지를 확률은 또는 두 번째 표현의 경우, 제1항은 바늘이 적어도 한 개의 선과 겹치게 되는 각도가 나올 확률을 나타낸다. 제2항은 바늘이 위치에 따라 선과 겹칠 수도 있고 안 겹칠 수도 있을 때 그 위치가 겹치는 위치가 될 확률을 나타낸다. 같이 보기각주
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia