숄레스키 분해숄레스키 분해(Cholesky decomposition)는 에르미트 행렬(Hermitian matrix), 양의 정부호행렬(positive-definite matrix)의 분해에서 사용된다. 촐레스키 분해의 결과는 하삼각행렬과 하삼각행렬의 켤레전치 행렬의 곱으로 표현된다. 정의에르미트 양의 정부호 행렬 의 숄레스키 분해는 다음과 같은 꼴의 분해이다. 여기서 은 하삼각행렬이며, 는 의 켤레전치이다. 또한, 의 대각 성분들은 모두 양의 실수이다. 의 모든 성분이 실수이면, 의 모든 성분도 실수이며, 로 분해된다. 역사프랑스의 수학자 앙드레루이 숄레스키(프랑스어: André-Louis Cholesky)가 실수 행렬에 대해 발견했다. 예제
응용이는 효율적인 수치해석에서 유용하게 사용되며, 몬테 카를로 시뮬레이션(Monte Carlo Simulations)에서도 유용하다. 선형 방정식 시스템을 푸는 실제 응용에서, 촐레스키 분해가 LU 분해와 비교했을 때 약 두 배 정도 효율적인 것으로 알려졌다.[1] 계산
같이 보기각주
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia