심플렉틱 행렬수학에서 심플렉틱 행렬(symplectic行列, 영어: symplectic matrix) 또는 사교행렬(斜交行列)은 특정한 성질을 만족시키는 2n×2n 정사각행렬이다. 심플렉틱 행렬들은 (콤팩트하지 않은) 리 군인 심플렉틱 군 Sp(2n,ℝ)을 이룬다. 정의2n×2n차 (실수) 심플렉틱 행렬은 다음을 만족하는 2n×2n 정사각행렬 이다. 여기서 는 다음과 같다. 여기서 은 n×n 단위행렬이고, , 을 만족한다. 성질이므로, 심플렉틱 행렬의 행렬식은 항상 1이다. 심플렉틱 행렬의 역행렬은 다음과 같다.
심플렉틱 행렬들은 행렬곱과 역행렬에 대하여 닫혀 있어, 실수 리 군 Sp(2n,ℝ)을 이룬다. 이는 복소 단순 리 군 Sp(2n,ℂ)의 콤팩트하지 않은 실수 형태이며, 심플렉틱 군으로 불린다. (다만, 콤팩트 실수 형태도 "심플렉틱 군"으로 불리나, 엄밀히 말하면 다른 군이다.) 심플렉틱 행렬의 로그는 해밀턴 행렬(영어: Hamiltonian matrix)이다. 같이 보기 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia