싱크함수![]() 싱크함수(sinc function)는 사인함수와 그 변수의 비로 나타내어지는 함수로 sinc(x) 로 나타낸다. 크게 정규화가 되었는지 유무를 기준으로 하는 두 가지 정의가 있는데, 디지털 신호처리나 정보이론에서는 정규화된 싱크함수(Normalized Sinc Function를 다음과 같이 정의하여 사용한다. 이것을 정규화되었다고 하는데, 이 함수의 푸리에 변환이 구형함수(Rectangular Function)이고 그 적분값이 동일하기 때문이다. 수학에서는, 비정규화된 싱크함수(Unnormalized Sinc Function)를 다음과 같이 정의하여 사용한다. 단, 두 정의 모두 x=0에서 특이점을 갖는데, 이 특이점은 없앨 수 있는 특이점이고 로피탈의 정리를 사용해 이 점으로의 극한값이 1임을 구할 수 있다. 때문에, 보통 엄밀하게 이를 사용할 필요가 없을 땐, 이를 무시하고 사용하기도 한다. 다른 몇몇 경우에는 이 점에서의 함수의 값을 1로 정의하고 사용하기도 한다. 싱크함수의 sinc는 이 함수의 라틴어명인 Sinus Cardinalis(Cardinal Sine)을 축약하여 지어진 이름이다. 같이 보기
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia