쌍곡기하학쌍곡기하학(Hyperbolic geometry) 또는 로바쳅스키기하학(Lobachevskian geometry)이란 평행선 공준을 대체하여 얻는 기하학이다. 평행선 공준을 모든 직선 R과 직선 R 밖 한 점 P에 대해, P를 지나면서 R과 교차하지 않는 직선(평행선)은 적어도 2개 존재한다로 바꾼 것이다. 평행선 공준과 동치인 플레이페어 공리가 주어진 직선 밖 한 점을 지나는, 그 직선의 평행선은 많아야 하나 존재한다. 인 반면에 쌍곡기하학에서는 평행선이 2개 이상 존재한다. 그 중에서 R의 한쪽 끝에서 거리가 0으로 접근하는 평행선은 각각의 방향에 대해 하나씩 존재하는데, 이러한 관계를 극한평행이라고 한다. 쌍곡기하학은 안장곡면과 유사구(Pseudosphere)의 기하학이기도 하다. 모형쌍곡공간을 유클리드 공간에 옮기는 방법으로는 푸앵카레 원판 등의 기법이 있다. 같이 보기
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia