에렌페스트 정리![]()
양자역학에서 에렌페스트 정리(Ehrenfest theorem)는 관측가능 연산자의 기댓값을 다루는 정리다. 오스트리아의 물리학자 파울 에렌페스트가 1927년에 증명하였다.[1] 내용하이젠베르크 묘사에서, 임의의 관측 가능한 연산자 는 시간에 따라 다음과 같이 변한다.
하이젠베르크 묘사에서는 상태 벡터 는 바뀌지 않으므로, 양변에 다음과 같이 기댓값을 취할 수 있다.
이제 양변이 연산자가 아닌 일반 함수이므로, 이 식은 슈뢰딩거 묘사에서도 성립한다. 이 식을 에렌페스트 정리라고 한다. 각주
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia