정삼각형
기하학에서 정삼각형(正三角形; 문화어: 바른삼각형; 영어: equilateral triangle)은 각 변의 길이가 모두 같은 삼각형을 말한다. 유클리드기하학이나 전통적인 기하학에서, 정삼각형의 각 각의 크기도 같으며 크기가 60°이다. 한꼭짓점에 모일 수 있는 면의 개수는 3개, 4개, 5개이다. 이는 각각 정사면체, 정팔면체, 정이십면체이다. 6개가 모이면 360°이므로 정삼각형 타일링이 되는데, 이는 360° 이하이기 때문에 정다각형 타일링을 만들 수 있으나 정삼각형 7개가 한 꼭짓점에 모인다고 가정하면 360°보다 큰 420°가 되어 면이 서로 겹쳐지기 때문에 정다면체가 될 수 없다. 당연히 정삼각형 8개 이상 모이면 역시나 360°를 초과하는 각도가 되어 면이 포개어지므로 이보다 많은 정삼각형은 한 꼭짓점에 모을 수 없다. (참고로 정각뿔과 관련된 고른 다면체는 각 면이 모두 합동인 정삼각형으로 이루어진 다면체/타일링이다). 성질어떤 정삼각형의 한 변의 길이를 라고 하면 이다. 이 값들은 모두 피타고라스의 정리를 이용하여 얻어낼 수 있다.
정삼각형의 작도![]() 정삼각형의 작도 방법은 다음과 같다.
단위원에서의 정삼각형의 작도위 작도법은 다른 방법으로, 이등변삼각형의 성질을 이용하여 원에 내접하는 정삼각형을 작도할 수도 있다. ![]() 같이 보기
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia