제곱평균제곱근수학에서 제곱평균제곱근(root mean square; rms) 혹은 이차평균(quadratic mean)은 변화하는 값의 크기에 대한 통계적 척도이다. 이것은 특히 사인함수처럼 변수들이 음과 양을 오고 갈 때에 유용하다. 이것은 유한 값들의 급수 혹은 연속적으로 변화하는 함수에 대해 모두 계산될 수 있으며, 명칭 그대로 값들의 제곱에 대한 평균의 제곱근이다. 또한 이것은 멱평균에서 지수 p = 2인 특수한 경우이다. 정의일련의 값들(혹은 연속시간 파형)에 대한 제곱평균제곱근은 원래의 값(혹은 연속시간 파형을 정의하는 함수의 제곱)의 제곱들에 대한 산술평균(평균)의 제곱근이다. 개의 값들 에 대한 제곱평균제곱근은 다음과 같이 주어진다: 구간 에서 정의된 연속함수(혹은 파형)에 대응되는 식은 다음과 같다: 그리고 전체 시간에 대한 제곱평균제곱근은 다음과 같다: 주기함수의 경우 전체 시간에 대한 제곱평균제곱근은 한 주기의 제곱평균제곱근과 같다. 사용전기공학에서는 전압과 전류의 이차평균을 써서 평균 전력을 구할 수 있는데, 이 때 각 이차평균값을 전압과 전류의 실효값이라 한다. 같이 보기외부 링크 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia