준등거리사상수학에서 준등거리사상(영어: quasi-isometry), 준등거리동형사상, 준등거리변환, 준거리동형사상 혹은 준등장사상은 거리 공간의 일정한 집합 위에 줄 수 있는 동치관계로서, 엉성한 구조(coarse structure)를 탐구하기 위해 일반적인 등거리사상에서 약간의 세부사항을 무시하는 것이다. 미하일 그로모프의 기하적 군론에서 중요한 역할을 한다. 정의가(연속일 필요는 없다) 거리 공간 에서 거리 공간 으로 가는 함수라 하자. 가 에서 로 가는 준등거리사상임은 다음 조건을 만족하는 것으로 정의된다. 적당한 상수 , , 가 존재하여, 두 거리 공간 , 간에 준등거리사상이 존재하면 준등거리동형(quasi-isometric) 또는 준거리동형이라고 한다. 이 정의는 약간의 고찰을 통해 순서에 무관하다고 볼 수 있고(즉, 준등거리동형 관계는 대칭관계이다), 나아가 준등거리동형 관계는 동치관계가 됨을 쉽게 보일 수 있다. 예
기하적 군론의 응용유한 생성 군 G 의 유한 생성집합 S 가 주어지면 이들의 케일리 그래프를 만들 수 있다. 그래프의 모든 모서리 길이를 1이라고 하면 이 그래프는 거리 공간이 된다. G 의 다른 유한생성집합 T를 가지고 다른 케일리 그래프를 만들 경우, 두 케일리 그래프는 준등거리동형이 된다. 따라서 케일리 그래프의 준등거리동형 동치류는 G 에만 의존한다. 이렇게 준등거리동형 동치류에만 의존하는 거리 공간의 성질을 통해 군의 불변량을 얻을 수 있으므로, 기하학적 방법으로 군론을 탐구할 수 있게 된다. 같이 보기참고 문헌
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia