즈남 문제![]() 즈남 문제(Znám problem)는 스테판 즈남(Štefan Znám)이 제안하는 에르되시-스트라우스 추측, 이집트 분수, 실베스터 수열 등과 연관되는 추측이다.[1] 이것은 "임의의 정수를 유한한 단위분수들의 집합으로 표현하는 것이 가능한가?"라는 질문이다. 수론에서 즈남(Znam)의 문제는, 임의의 정수 "1"을 예로 들면, 일단의 단위분수의 세트가 임의의 정수의 적절한 분산임을 설정하고, 그 단위분수들의 합과 곱의 합에서 "1"이 가능한지를 구현한다. 한편 이러한 단위분수들이 계속해서 증가되는 세트에서도 여전히 "1"의 값을 갖게되는 일단의 세트 집합이 가능한지를 예상하게 된다. 즈남 문제의 유한한 단위분수들즈남문제의 일반화와 이집트 분수형태의 접근소수 유사완전수에서처럼 즈남문제의 단위분수 세트의 분모들은 일반적으로 소수로 소수 유사완전수의 단위분수들이다. 약한 즈남문제의 이집트 분수표현같이 보기각주
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia