지수 적분 함수수학에서 지수 적분 함수(指數積分函數, 영어: exponential integral function)은 특수 함수의 하나이며, 의 역도함수이다. 정의0아닌 실수 에 대하여, 지수 적분 함수 은 다음과 같이 정의된다. 여기서 는 코시 주요값이다. 임의의 복소수 에 대하여 이 함수를 해석적 연속으로 정의할 수 있다. 그러나 이 경우 음의 실수에서 분지절단이 생긴다. 성질지수 적분 함수 는 통상적으로 음의 실수에서 분지절단을 갖고, 다른 곳에서는 정칙함수이다. 또한, 다음 함수는 전해석 함수이다. 급수지수 적분 함수의 테일러 급수는 다음과 같다. 이는 0이 아닌 모든 실수에서 수렴한다. 이 식은 지수 적분 함수의 부정적분 정의 에 를 대입한 뒤 적분해서 얻을 수 있다. 같이 보기외부 링크
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia