쿨백-라이블러 발산쿨백-라이블러 발산(Kullback–Leibler divergence, KLD)은 두 확률분포의 차이를 계산하는 데에 사용하는 함수로, 어떤 이상적인 분포에 대해, 그 분포를 근사하는 다른 분포를 사용해 샘플링을 한다면 발생할 수 있는 정보 엔트로피 차이를 계산한다. 상대 엔트로피(relative entropy), 정보 획득량(information gain), 인포메이션 다이버전스(information divergence)라고도 한다. 정보이론에서는 상대 엔트로피, 기계학습의 결정 트리에서는 정보 획득량을 주로 사용한다. 쿨백-라이블러 발산은 비대칭으로, 두 값의 위치를 바꾸면 함수값도 달라진다. 따라서 이 함수는 거리 함수는 아니다. 정의두 확률변수에 대한 확률분포 가 있을 때, 두 분포의 쿨백-라이블러 발산은 다음과 같이 정의된다. 또는, 측도를 사용하여 더 일반적으로 표현할 수도 있다. 두 확률측도 가 있고 는 에 대해 절대수렴할 경우, 두 분포의 쿨백-라이블러 발산은 다음과 같이 정의된다. 여기에서 는 라돈-니코딤 도함수(Radon–Nikodym derivative)이다. 의미쿨백-라이블러 발산은 어떠한 확률분포 가 있을 때, 샘플링 과정에서 그 분포를 근사적으로 표현하는 확률분포 를 대신 사용할 경우 엔트로피 변화를 의미한다. 따라서, 원래의 분포가 가지는 엔트로피 와 대신 를 사용할 때의 교차 엔트로피(cross entropy) 의 차이를 구하면, 로, 원래 정의했던 식과 같은 결과가 나온다. 같이 보기 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia