크로네커-베버 정리크로네커-베버 정리(영어: Kronecker–Weber theorem, 중국어: 定理)는 대수적 수론의 정리로, 유리수체 위의 갈루아 군이 아벨 군인 모든 대수적 수체, 즉 유리수체의 임의 유한 아벨 확대는 원분체의 부분체라는 내용이다. 예예를 들어, 의 갈루아 군은 이므로 이는 유리수체의 아벨 확대이다. 따라서 는 1의 거듭제곱근들의 유리수 계수 선형결합으로 나타낼 수 있다. 구체적으로, 이다. 즉, 는 원분체 의 부분체이다. 역사이 정리는 1853년 독일의 레오폴트 크로네커에 의해 처음으로 언급되었지만 증명은 완벽하지 못했다.[1][2] 또 다른 독일 수학자인 하인리히 마르틴 베버(Heinrich Martin Weber)가 1886년 완벽해 보이는 증명을 출판하여 이 둘의 이름이 붙었다. 그러나 베버의 첫 증명에는 약간의 비약과 오류가 있었고, 올라프 노이만(Olaf Neumann)이 1981년 논문을 통해 이를 바로잡았다.[3] 다비트 힐베르트는 1896년 처음으로 이 정리의 올바르고 완전한 증명에 성공하였다.[4] 국소적 크로네커-베버 정리미국의 조너선 루빈(Jonathan Lubin)과 존 테이트는 1965년, 1966년 두 논문을 통해 크로네커-베버 정리의 국소화된 판본을 발표하였다. 여기서 루빈과 테이트는 국소체(local field)의 임의 아벨 확대는 원분 확대(cyclotomic extension)와 루빈-테이트 확대(Lubin-Tate extension)만으로 구성될 수 있다는 것을 보였다. 같이 보기각주
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia