파운데이션 모델파운데이션 모델(foundation model)은 광범위한 사용 사례에 적용할 수 있도록 광범위한 데이터에 대해 훈련된 기계 학습 또는 딥 러닝 모델이다. 챗GPT 등의 대형 언어 모델과 같은 생성형 인공지능이 대표적인 파운데이션 모델이다.[1] 스탠포드 인간 중심 인공 지능 연구소(HAI)의 파운데이션 모델 연구 센터(CRFM)가 이 용어를 만들고 대중화했다.[2] 파운데이션 모델은 다양한 사용 사례를 지원할 수 있는 범용 기술이다. 파운데이션 모델을 구축하는 것은 리소스 집약적인 경우가 많으며, 가장 비싼 모델의 경우 기본 데이터 및 필요한 컴퓨팅 비용을 지불하는 데 수억 달러가 소요된다.[3] 대조적으로, 특정 사용 사례에 맞게 기존 기반 모델을 조정하거나 직접 사용하는 것은 비용이 훨씬 저렴하다. 파운데이션 모델의 초기 예는 구글의 BERT[4] 및 오픈AI의 "GPT-n" 시리즈와 같은 언어 모델(LM)이었다. 텍스트 외에도 이미지용 DALL-E 및 플라밍고,[5] 음악용 뮤직젠(MusicGen),[6] 로봇 제어용 RT-2[7] 등 다양한 양식에 걸쳐 기반 모델이 개발되었다. 파운데이션 모델은 AI 개발의 광범위한 변화를 구성한다. 파운데이션 모델은 천문학,[8] 방사선학,[9] 유전체학,[10] 음악,[11] 코딩,[12] 시계열 예측[13] 및 수학[14]을 위해 구축되고 있다. 같이 보기각주
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia