파투 보조정리실해석학에서 파투 보조정리(영어: Fatou’s lemma)는 가측 함수의 열의 하극한의 르베그 적분과 르베그 적분의 하극한 사이에 성립하는 부등식이다. 정의파투 보조정리에 따르면, 측도 공간 위의 임의의 음이 아닌 가측 함수의 열 에 대하여, 다음이 성립한다.[1]:23 여기서 는 하극한이다. 예등식만약 이 같은 상수 함수의 열일 경우, 파투 보조정리는 등식이 된다. 부등식실수선 위의 보렐 시그마 대수 와 그 위의 르베그 측도 를 생각하자. 가측 함수열 의 경우, 파투 보조정리의 좌변과 우변은 각각 0과 ∞이므로, 이는 등식이 아니다. 가측 함수열 의 경우도 파투 보조정리는 엄격한 부등식 0<1이다. 역사프랑스의 수학자 피에르 파투(프랑스어: Pierre Fatou)가 증명하였다. 각주
외부 링크
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia