포커르-플랑크 방정식확률 과정 이론에서, 포커르-플랑크 방정식(Fokker-Planck方程式, 영어: Fokker–Planck equation)은 어떤 이토 확률 과정의 확률 밀도 함수가 따르는 편미분 방정식이다. 이는 시간에 대하여 1차, 공간에 대하여 2차 편미분 방정식이다. 형식적으로, 슈뢰딩거 방정식의 윅 회전의 꼴이다. 정의다음이 주어졌다고 하자. 편의상, 다음 행렬을 정의하자. 이는 이토 확률 과정의 분산을 나타낸다. 이 경우, 이 이토 확률 과정에 대응되는 포커르-플랑크 방정식은 함수 에 대한, 다음과 같은 편미분 방정식이다. (편의상 아인슈타인 표기법을 사용하였다.) 성질이토 확률 과정의, 시간 에서의 확률 밀도 함수 는 포커르-플랑크 방정식을 따른다. 예위너 확률 과정 는 , 인 이토 확률 과정이다. 이 경우 포커르-플랑크 방정식은 가 된다. 이는 위의 열 방정식이다. 역사아드리안 다니얼 포커르(네덜란드어: Adriaan Daniël Fokker, 1887〜1972)와 막스 플랑크가 도입하였다. 같이 보기외부 링크
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia