하세-베유 제타 함수수학에서, 하세-베유 제타 함수(영어: Hasse–Weil zeta function)는 주어진 대수다양체의 일부 성질들을 나타내는 L-함수의 하나이다. 유한체에 대한 점들의 수에 대한 정보를 담고 있다. 정의가 유리수체에 대한 비특이 사영 대수다양체라고 하자. 그렇다면 모든 소수 에 대하여 를 정의할 수 있다. 그렇다면 의 하세-베유 제타 함수 를 을 국소 제타 함수(영어: local zeta function) 들의 곱으로 정의할 수 있다. 이 정의는 유한 개의 들의 유리 함수에 대하여 약간의 모호함을 가지지만, 이 함수의 성질은 이 모호함에 크게 의존하지 않는다. 이 모호함을 해소하려면 에탈 코호몰로지를 사용하여야 한다. 하세-베유 L-함수하세-베유 제타 함수의 특수한 경우로, 타원 곡선의 하세-베유 L-함수(영어: Hasse–Weil L-function)가 있다. 유리수체에 대한 타원 곡선 의 하세-베유 L-함수 는 다음과 같다. 여기서 는 리만 제타 함수이다. 하세-베유 추측하세-베유 추측(영어: Hasse–Weil conjecture)에 따르면, 하세-베유 제타 함수는 복소평면 전체에서 유리형 함수로 해석적 연속이 가능해야 한다. 타원 곡선의 경우는 모듈러성 정리에 따라 이미 증명되었다. 같이 보기참고 문헌
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia