해구형 지진(海溝型地震, 영어: Trench type earthquake), 영어권에서는 비슷한 명칭으로 메가스러스트 지진(영어: Megathrust earthquakes)은 판 사이의 수렴 경계, 그 중에서도 섭입대에서 일어나는 스러스트 단층지진을 의미한다. 판 경계에서 일어나는 이 지진은 매우 강력하기 때문에 보통 모멘트 규모 M9.0을 넘는다.[1][2] 또한 지구상에서 규모 9 이상의 초거대지진이 가능한 유일한 곳이기도 하다.
1900년대 이래로 M9.0 이상의 모든 초거대지진이 해구형 지진이었기 때문에, 보통 해구형 지진중 모멘트 규모가 큰 강한 지진을 거대지진(巨大地震)으로 묶어 부르기도 한다.[3] 대표적인 거대지진으로 2011년 규모 M9.1의 도호쿠 지방 태평양 해역 지진이 있다.
발생 원리
영어권에서 자주 쓰이는 해구형 지진의 "메가스러스트"(megathrust)란 순다 메가스러스트같이 섭입대를 따라 판 경계면에서 형성되는 거대한 규모의 충상단층을 의미한다.[4][5] 하지만 메가스러스트라고 해서 반드시 해양판과 대륙판의 섭입으로만 이루어지는 것은 아니고, 히말라야산맥 메가스러스트처럼 대륙판끼리의 충돌 지역에서도 발생할 수 있다.[6] 메가스러스트 단층은 1,000 km 길이로까지 이어질 수 있다.[7]
충상단층(스러스트 단층)이란 역단층의 일종으로 단층 위의 지층이 단층 아래의 지층과 비교해 위로 올라 탄 형태이다. 충상단층은 단층 위의 지층이 아래쪽으로 이동하는 정단층이나 단층 한 쪽의 지층이 다른 쪽과 비교하여 수평으로만 이동하는 주향이동단층과는 구분된다. 충상단층의 단층 각도는 일반적으로 45도 이하의 매우 낮은 각도[8]로 다른 평범한 역단층과 큰 차이점이 있으며 단층의 변위길이도 매우 길다.[9][10] 충상단층은 사실상 단층 위의 지층이 단층 아래의 지층 위로 올라타 얹혀져 있는 모양이다. 충상단층은 지각이 지구조적인 힘으로 압축되는 지역에서 볼 수 있다.[11]
메가스러스트 단층은 두 지각판과 해양판이 충돌하는 곳에서 볼 수 있다. 두 판 중 하나가 해양판 암석권이라면 그 해양판은 다른 판 아래로 밑으로 내려가면서 슬래브(Slab) 형태로 지구의 맨틀로 가라앉으며 해구를 형성한다. 두 판이 충돌한 접촉면은 침강하는 슬래브판을 기준으로 위에 얹혀진 가벼운 판의 암석이 위쪽으로 이동하는 메가스러스트 단층이 된다.[5] 메가스러스트 단층을 따라 마찰이 일어나면 두 판이 서로 아래로 침강하다가 두 판의 왜곡이 쌓인다. 왜곡이 쌓이다 축적된 변형에너지를 방출하기 위해 판이 갑자기 움직이면서 단층이 파열될 때 메가스러스트 지진이 일어난다.[7]
2016년 발표된 연구에서는 매우 거대한 규모의 메가스러스트 지진은 매우 얉은 깊이로 침강한 슬래브, 이른바 평판 슬래브 섭입과 깊은 관계가 있는 것으로 밝혀졌다.[23] 비슷한 규모의 다른 지진과 비교했을 때 메가스러스트 지진은 지진 지속 시간이 더 길고 단층 파열 속도도 더 느리다. 거대한 메가스러스트 지진은 두꺼운 퇴적물이 쌓인 섭입대에서 일어나며, 암석 위에 두껍게 쌓인 퇴적물 덕분에 단층 파열이 막히지 않고 먼 거리까지 쭉 이어진다.[5]
↑Park, J.; Butler, R.; Anderson, K.; 외. (2005). “Performance Review of the Global Seismographic Network for the Sumatra-Andaman Megathrust Earthquake”. 《Seismological Research Letters》 76 (3): 331–343. doi:10.1785/gssrl.76.3.331. ISSN0895-0695.
↑“Tsunami Terminology”. 《The National Tsunami Hazard Mitigation Program History, 1995–2005》. Pacific Marine Environmental Laboratory. 2011년 2월 25일에 원본 문서에서 보존된 문서.
↑Megawati, K.; Pan, T.-C. (2009년 4월 1일). “Regional Seismic Hazard Posed by the Mentawai Segment of the Sumatran Megathrust”. 《Bulletin of the Seismological Society of America》 99 (2A): 566–584. Bibcode:2009BuSSA..99..566M. doi:10.1785/0120080109.
↑Sieh, Kerry (March 2007). “The Sunda megathrust: past, present and future”. 《Journal of Earthquake and Tsunami》 01 (1): 1–19. doi:10.1142/S179343110700002X.
↑Hirahara, K.; Kato N.; Miyatake T.; Hori T.; Hyodo M.; Inn J.; Mitsui N.; Sasaki T.; Miyamura T.; Nakama Y.; Kanai T. (2004). “Simulation of Earthquake Generation Process in a Complex System of Faults”(PDF). 《Annual Report of the Earth Simulator Center April 2004 - March 2005》. 121–126쪽. 2011년 9월 27일에 원본 문서(PDF)에서 보존된 문서. 2009년 11월 14일에 확인함.
↑“地震調査研究推進本部(2011)”(PDF) (일본어). 地震調査研究推進本部. 2011년 11월 25일. 2018년 5월 10일에 확인함.
↑Witter, Rob; Briggs, Rich; Engelhart, Simon E.; Gelfenbaum, Guy; Koehler, Rich D.; Nelson, Alan; Selle, SeanPaul La; Corbett, Reide; Wallace, Kristi (2019년 5월 1일). “Evidence for frequent, large tsunamis spanning locked and creeping parts of the Aleutian megathrust”. 《GSA Bulletin》 131 (5–6): 707–729. Bibcode:2019GSAB..131..707W. doi:10.1130/B32031.1. S2CID134362013.
↑Ali, Syed Tabrez; Freed, Andrew M. (November 2010). “Contemporary deformation and stressing rates in Southern Alaska: Deformation and stressing rates in S. Alaska”. 《Geophysical Journal International》 183 (2): 557–571. doi:10.1111/j.1365-246X.2010.04784.x.
↑Ojeda, Javier; Ruiz, Sergio; del Campo, Francisco; Carvajal, Matías (2020년 5월 1일). “The 21 May 1960 Mw 8.1 Concepción Earthquake: A Deep Megathrust Foreshock That Started the 1960 Central-South Chilean Seismic Sequence”. 《Seismological Research Letters》 91 (3): 1617–1627. doi:10.1785/0220190143. S2CID216347638.