UP (복잡도)계산 복잡도 이론에서 UP 곧, 모호하지 않은 비결정론적 다항 시간(Unambiguous non-deterministic Polynomial-time)이란 비결정론적 튜링 기계가 입력마다 받아들이는 경로를 최대 한 개만으로 해서 다항 시간에 풀 수 있는 판정 문제들의 복잡도 종류이다. UP는 P를 포함하고, NP에 속한다. P ≠ UP이거나 UP ≠ NP일 (아니면, 둘 다일) 것으로 추측하고 있다. 그렇지 않으면 P = NP이기 때문이다. (학계에서는 P ≠ NP일 것으로 보고 있다.) 두 가지 추측이 모두 참일 가능성이 높다. 흔히 NP를 이렇게 다시 형식화한다: 어떤 언어가 NP라는 것과 답이 주어질 때 결정론적 기계로 다항시간에 검증할 수 있다는 것은 동치이다. 비슷하게, 주어진 답이 다항 시간에 검증될 수 있고, 검증 기계가 문제 인스턴스마다 답변을 최대 한 개만 받아들이면, 그 언어는 UP이다. 더 형식적으로 쓰면, 언어 은 입력을 두 개 받는 다항 시간 알고리즘 A와 다음 조건을 만족하는 상수 c가 존재할 때 UP가 된다. 알고리즘 는 을 다항 시간에 검증한다. |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia