Комплексна функција е функција во која и независно променлива и зависно променлива се комплексни броеви. Попрецизно, комплексна функција е функција која пресликува домен, што е подмножество од комплексната рамнина, исто така во подмножество од комплексната рамнина.
Кај секоја комплексна функција, и независно променливата и зависно променливата може да се поделат на реален и имагинарен дел:
и
каде и се реални функции.
Со други зборови, компонентите на функцијата,
и
може да се толкуваат како реални функции на две променливи, x и y.
Основните поими на комплексната анализа често се воведуваат со проширување на елементарните реални функции (експоненти, логаритми и тригонометриски функции) во комплексниот домен.
Изводи и Коши-Римановите равенки
Како и во реалната анализа, мазната комплексна функција може да има извод во една точка од нејзиниот домен Ω. Всушност, дефиницијата за извод
е аналогна на онаа во реалната анализа, со една многу важна разлика. Во реалната анализа, на лимесот може да му се пристапи само по еднодимензионална права. Во комплексната анализа, на лимесот може да му се пристапи од која било насока долж дводимензионалната комплексна рамнина.
Ако овој лимес, извод, постои во секоја точка од Ω, тогаш се вели дека функцијата е диференцијабилна на Ω. Може да се покаже дека секоја диференцијабилна функција е аналитичка. Ова е многу помоќен резултат отколку кај аналогната теорема што може да се докаже за реални функции. Во реалната анализа, можеме да конструираме функција која има прв извод на целиот домен, но чиј втор извод не постои во една или повеќе точки од доменот. Меѓутоа, во комплексната рамнина, ако функцијата е диференцијабилна во некоја околина, таа мора да биде бесконечно диференцијабилна во таа околина.[6][7]
Со примена на методите на векторска анализа за пресметување на парцијалните изводи на две реални функции и во кои функцијата може да се разложи, и со разгледување на двете патеки што водат до точка од Ω, може да се покаже дека изводот постои ако и само ако:
Пресметувајќи ги реалните и имагинарните делови на овие два израза, ја добиваме традиционалната формулација на Коши-Римановите равенки:[8][9]
или запишано на друг начин,
Со диференцирање на овој систем од две парцијални диференцијални равенки, прво во однос на x, а потоа во однос на y, лесно може да се покаже дека:
или запишано на друг начин,
Со други зборови, реалните и имагинарните делови од диференцијабилната функција од комплексна променлива се хармонични функции бидејќи ја задоволуваат Лапласовата равенка.
Холоморфни функции
Холоморфните функции се комплексни функции дефинирани на отворено подмножество од комплексната рамнина кои се диференцијабилни.[10] Комплексната диференцијабилност има многу посилни последици од обичната (реална) диференцијабилност. На пример, холоморфните функции се бесконечно диференцијабилни, што не важи за реално диференцијабилните функции. Повеќето елементарни функции, вклучувајќи ја експоненцијалната функција, тригонометриските функции и сите полиномни функции, се холоморфни.[11]
Наводи
↑Apostol, Tom M. „An Introduction to the Theory of Numbers“. (Review of Hardy & Wright.) Mathematical Reviews (MathSciNet) MR0568909. American Mathematical Society. Посетено на 28 февруари 2016.. Наводот journal бара |journal= (help); Проверете ги датумските вредности во: |access-date= (help)CS1-одржување: ref=harv (link)
↑Scheidemann, V., Introduction to complex analysis in several variables (Birkhauser, 2005)
↑Zill, Dennis G, and Michael R Cullen. Differential Equations with Boundary-Value Problems. 8th edition / ed., Brooks/Cole, Cengage Learning, 2013. Chapter 12: Boundary-value Problems in Rectangular Coordinates. p. 462. 978-1-111-82706-9.
Press, WH; Teukolsky, SA; Vetterling, WT; Flannery, BP (2007). „Section 5.5 Complex Arithmetic“. Numerical Recipes: The Art of Scientific Computing (3rd. изд.). New York: Cambridge University Press. ISBN978-0-521-88068-8. Архивирано од изворникот на 13. 03. 2020. Посетено на 27 јуни 2023. Проверете ги датумските вредности во: |archive-date= (help)CS1-одржување: ref=harv (link)
The Road to Reality: A Complete Guide to the Laws of the Universe, by Roger Penrose; Alfred A. Knopf. Комплексна анализа Chapters 4–7 in particular deal extensively (and enthusiastically) with complex numbers.
Unknown Quantity: A Real and Imaginary History of Algebra, by John Derbyshire; Joseph Henry Press. Комплексна анализа (hardcover 2006). A very readable history with emphasis on solving polynomial equations and the structures of modern algebra.
Visual Complex Analysis, by Tristan Needham; Clarendon Press. Комплексна анализа (hardcover, 1997). History of complex numbers and complex analysis with compelling and useful visual interpretations.