Лице (геометрија)Лице, страна или ѕид — рамна површина (рамнинска област) што претставува дел од границата на тело.[1] Тродимензионално тело ограничено исклучиво со лица е полиедар. Во потехнички разгледувања на геометријата на полиедрите и повеќедимензионалните политопи, поимот исто така се користи за да значи елемент од која било димензија на поопшт политоп (во кој било број димензии).[2] Повеќеаголно лицеВо елементарната геометрија, лице е многуаголник[б 1] на границата на многуедар.[2][3] Други имиња за повеќеаголно лице се полиедарска страна и Евклидова рамна теселација. На пример, кој било од шесте квадрати што врзуваат коцка е лице на коцката. Понекогаш „лицето“ се користи и за да се однесува на 2-димензионалните карактеристики на 4-политоп. Со ова значење, 4-димензионалниот тесеракт има 24 квадратни лица, од кои секое дели две од 8 кубни ќелии.
Број на повеќаголни лица на многуедарСекоја површина на конвексен полиедар има Ојлерова карактеристика каде V е бројот на темиња, E е бројот на рабовите и F е бројот на лица. Оваа равенка е позната како Ојлеровата полиедарска формула. Така, бројот на лица е за 2 повеќе од разликата на бројот на рабовите и бројот на темиња. На пример, една коцка има 12 рабови и 8 темиња, а оттука и 6 лица. к -лицеВо повисокодимензионалната геометрија, лицата на политопот се одлики од сите димензии.[2][4] Лицето со димензија k се нарекува k-лице. На пример, повеќеаголните лица на обичен полиедар се со 2-лица. Во теоријата на множествата, множеството лица на политоп го вклучува самиот политоп и празното множество, каде што празното множество е за конзистентност со „димензија“ од -1. За кој било n -политоп (n-димензионален политоп), −1 ≤ k ≤ n. На пример, со ова значење, лицата на коцката ја сочинуваат самата коцка (3-лица), нејзините (квадратни) аспекти (2-лица), нејзините (линиски сегмент) рабови (1-лица), нејзините (точка) темиња (0-лица), и празното множество. Во некои области на математиката, како што е полиедарската комбинаторика, политопот е по дефиниција конвексен. Формално, лице на политоп P е пресекот на P со кој било затворен полупростор чија граница не е поврзана со внатрешноста на P.[5] Од оваа дефиниција произлегува дека множеството лица на политоп ги опфаќа самиот политоп и празното множество.[6] [4] Во други области на математиката, како што се теориите за апстрактни политопи и ѕвездести политопи, барањето за конвексност е олабавено. Апстрактната теорија сè уште бара множеството лица да го вклучува самиот политоп и празното множество. n -димензионален симплекс (линиска отсечка (n = 1), триаголник (n = 2), тетраедар (n = 3) итн.), дефиниран со n + 1 темиња, има лице за секое подмножество темиња, од празното поставено до множеството од сите темиња. Конкретно, има вкупно 2n + 1 лица. Бројот на нив што се k-лица, за k ∈ М {−1, 0, ..., n}, е биномниот коефициент . Постојат специфични имиња за k-лицата во зависност од вредноста на k и, во некои случаи, од тоа колку k е блиску до димензионалноста n на политопот. Теме или 0-лицеТеме е вообичаено име за 0-лице. Раб или 1-лицеРаб е вообичаено име за 1-лице. Лице или 2-лицеУпотребата на лице во контекст каде што специфичното k е наменето за k-лице, но не е експлицитно специфицирано, најчесто е 2-лице. Ќелија или 3-лицеЌелија е полиедарски елемент (3-лице) од 4-димензионален политоп или 3-димензионален тесел или повисок. Ќелиите се аспекти за 4-политопи и 3-саќе.
Хиперлице или (n − 1)-лицеВо повисокодимензионалната геометрија, хиперлицата на n-политопот се (n − 1 ) лицата (лице со димензија за еден помало од самиот политоп).[7] Политопот е ограничен со неговите хиперлица. На пример:
Гребен или (n − 2)-лицеВо сродната терминологија, (n − 2 )-лицата на n-политопот се нарекуваат гребени (исто така подхиперлица).[8] Гребенот се гледа како граница помеѓу точно две хиперлица на политоп или саќе. На пример:
Врв или (n − 3)-лице(n − 3)-лицата на n-политоп се нарекуваат врвови. Врвот содржи ротациона оска од хиперлица и гребени во обичен политоп или саќе. На пример:
Белешки
Наводи
|
Portal di Ensiklopedia Dunia