ഗണസിദ്ധാന്തം![]() ഗണങ്ങളെ കുറിച്ച് പഠിക്കുന്ന ഗണിത ശാസ്ത്രശാഖയാണ് ഗണസിദ്ധാന്തം. വ്യക്തമായി നിർവ്വചിക്കപ്പെട്ടിട്ടുള്ള ഒരു കൂട്ടത്തെ ഗണം എന്നു പറയുന്നു. എല്ലാ വസ്തുക്കളുടേയും കൂട്ടത്തെ ഗണം എന്നു പറയുമെങ്കിലും സാധാരണയായി ഗണിതശാസ്ത്ര സംബന്ധിയായ കൂട്ടങ്ങളെയാണ് ഗണം എന്നു പറയുന്നത്. ഗണസിദ്ധാന്തം ഉപയോഗിച്ച് ഏറെക്കുറെ എല്ലാ ഗണിതശാസ്ത്ര വസ്തുതകളേയും നിർവചിക്കാം. ആധുനിക ഗണസിദ്ധാന്തപഠനങ്ങൾ തുടങ്ങിയത് ജോർജ് കാന്ററും റിച്ചാർഡ് ഡെഡ്കിന്റും ആയിരുന്നു. ഇരുപതാം നൂറ്റാണ്ടിന്റെ തുടക്കത്തിൽ നെയിവ് ഗണസിദ്ധാന്തത്തിൽ നിരവധി വിരോധാഭാസങ്ങൾ കണ്ടെത്തിയപ്പോൾ , ആക്സിയം ഓഫ് ചോയിസോടെയുള്ള സെർമലോ-ഫ്രാങ്കൽ സ്വയപ്രമാണമടക്കം നിരവധി സ്വയപ്രമാണവ്യവസ്ഥകൾ രൂപീകരിക്കപ്പെട്ടു. ചരിത്രം![]() നിരവധി ഗവേഷണങ്ങൾക്കും പഠനങ്ങൾക്കും ശേഷമാണ് സാധാരണയായി ഓരോ ഗണിതശാസ്ത്രശാഖയും രൂപം കൊള്ളാറുള്ളത്. എന്നാൽ 1874ൽ ജോർജ് കാന്റർ തയ്യാറാക്കിയ "ഓൺ എ കാരക്ടറിസ്റ്റിക് പ്രോപ്പർട്ടി ഓഫ് ആൾജിബ്രിക് നമ്പേഴ്സ്" എന്ന ഒരൊറ്റ പ്രബന്ധത്തിൽ നിന്നാണ് ഗണസിദ്ധാന്തം രൂപം കൊള്ളുന്നത്.[1][2] ബിസി അഞ്ചാം നൂറ്റാണ്ടിൽത്തന്നെ പുരാതന ഭാരതീയ ഗണിതശാസ്ത്രജ്ഞരും ഗ്രീക്ക് ഗണിതജ്ഞനായ സെനോയും അനന്തതയെ കുറിച്ച് പഠനങ്ങൾ നടത്തിയിരുന്നു. പത്തൊൻപതാം നൂറ്റാണ്ടിന്റെ ആദ്യ പകുതിയിൽ ബെർണാഡ് ബോൽസാനോ നടത്തിയ പഠനങ്ങൾ ഇതിൽ ശ്രദ്ധേയമാണ്.[3] അനന്തതയെ കുറിച്ചുള്ള ആധുനികാശയങ്ങൾ പിറവിയെടുക്കുന്നത് 1867-71 കാലഘട്ടത്തിലെ ജോർജ് കാന്ററുടെ സംഖ്യാ സിദ്ധാന്ത പഠനത്തോടു കൂടിയായിരുന്നു. 1872ൽ ഡെഡ്കിന്റുമായി നടത്തിയ കൂടിയാലോചന കാന്ററുടെ ചിന്തകളെ മാറ്റിമറിക്കുകയും ഗണസിദ്ധാന്തം രൂപം കൊണ്ട പ്രബന്ധം രചിക്കാൻ കാരണമാവുകയും ചെയ്തു. 1874ലാണ് ഈ പ്രബന്ധം പുറത്തിറങ്ങുന്നത്. കാന്ററുടെ പഠനങ്ങൾ അക്കാലത്തുണ്ടായിരുന്ന ഗണിതജ്ഞരുടെ ധ്രുവീകരണത്തിന് കാരണമായി. കാൾ വിയെഴ്സ്സ്ട്രാസും ഡെഡ്കിന്റും കാന്ററെ പിന്തുണച്ചപ്പോൾ, ഗണിതനിർമ്മിതിയുടെ ഉപജ്ഞാതാവായ പോൾ റോണക്കർ കാന്ററെ എതിർത്തു. പിന്നീട് വിവിധ സിദ്ധാന്തങ്ങൾ ഗണസിദ്ധാന്തം ഉപയോഗിച്ച് തെളിയിക്കപ്പെട്ടപ്പോൾ കാന്റർ അംഗീകരിക്കപ്പെട്ടു. ക്ലൈനിന്റെ സർവ്വവിജ്ഞാനകോശത്തിനു വേണ്ടി ആർതർ ഷോൺഫ്ലൈസ് എഴുതിയ മെങ്കൻലെഹ്റെ എന്ന ലേഖനം ഗണസിദ്ധാന്തം ഉപയോഗിച്ച് രചിച്ചതാണ്. പിന്നീട് ഇരുപതാം നൂറ്റാണ്ടിന്റെ ആരംഭത്തിൽ ഗണസിദ്ധാന്തം മൂലം നിരവധി വിരോധാഭാസങ്ങൾ ഉണ്ടായി. ബെട്രാന്റ് റസലും ഏൺസ്റ്റ് സെർമലോയും വെവ്വേറെ കണ്ടെത്തിയ വിരോധാഭാസമായിരുന്നു ഏറ്റവും ലളിതമായത്. ആ വിരോധാഭാസം ഇപ്പോൾ റസലിന്റെ വിരോധാഭാസം എന്നറിയപ്പെടുന്നു. 1899ൽ കാർഡിനാലിറ്റിയെ കുറിച്ച് കാന്റർ തന്നെ ഉന്നയിച്ച പ്രശ്നം മറ്റൊരു വിരോധാഭാസമായി മാറി. ഇത്തരത്തിലുള്ള വിരോധാഭാസങ്ങൾ ഈ സിദ്ധാന്തം തള്ളപ്പെട്ടു പോകുന്നതിനു പകരം പുതിയ ഉപസിദ്ധാന്തങ്ങളുടെ രൂപീകരണത്തിനു കാരണമായി. ഏൺസ്റ്റ് സെർമലോയും അബ്രഹാം ഫ്രാങ്കലും കൂടി രൂപീകരിച്ച ഇത്തരത്തിലുള്ളൊരു സിദ്ധാന്തമാണ് സെർമലോ-ഫ്രാങ്കൽ ഗണസിദ്ധാന്തം. ഇത് ഗണസിദ്ധാന്തത്തിലെ മറ്റൊരു സ്വയംപ്രമാണമായി മാറി. ഹെൻറി ലെബസ്ഗിനെപ്പോലെയുള്ള വിശകലജ്ജർ ഗണസിദ്ധാന്തത്തിന്റെ ബൃഹത്തായ ഗണിതശാസ്ത്ര ഉപയോഗം പരിചയപ്പടുത്തി. ആധാരവ്യവസ്ഥയിലാണ് ഗണസിദ്ധാന്തത്തിന്റെ കാതലായ ഉപയോഗം. അടിസ്ഥാന ഘടകങ്ങൾo എന്ന വസ്തുവും ഗണം A തമ്മിലുള്ള ദ്വയാങ്കബന്ധം വിശദമാക്കിയാണ് ഗണസിദ്ധാന്തം ആരംഭിക്കുന്നത്. o എന്ന വസ്തു ഗണം Aയിൽ അംഗമാണെങ്കിൽ o ∈ A എന്നെഴുതുന്നു (oഅംഗമാണ്A എന്നു വായിക്കുന്നു). ഗണങ്ങളെയും ഓരോ വസ്തുക്കളായി പരിഗണിക്കാം എന്നതു കൊണ്ടു തന്നെ ഗണങ്ങൾ തമ്മിലും ദ്വയാങ്കബന്ധങ്ങൾ നിർവചിക്കാം. ഗണങ്ങൾ തമ്മിലുള്ളൊരു ബന്ധമാണ് ഉപഗണബന്ധം. ഗണം Aയിലെ അംഗങ്ങളെല്ലാം ഗണം Bയിലെ അംഗങ്ങളാണെങ്കിൽ A ⊆ B എന്നെഴുതുന്നു (A ഉപഗണം B എന്നു വായിക്കുന്നു). ഉദാഹരണത്തിന് {1,2,3} എന്ന ഗണത്തിന്റെ ഉപഗണം {1,2} എന്ന ഗണമാണ്, എന്നാൽ {1,4} എന്നത് ഉപഗണമല്ല. ഗണങ്ങൾ തമ്മിലുള്ള പ്രധാന ദ്വയാങ്കക്രിയകൾ ഇവയാണ്:
പ്രായോഗികതഗണസിദ്ധാന്തം മാത്രം ഉപയോഗിച്ച് നിരവധി ഗണിത ആശയങ്ങൾ നിർവചിക്കാം. ഗ്രാഫുകൾ, സദിശതലങ്ങൾ എന്നിവയെ ഓരോ ഗണങ്ങളായി നിർവചിക്കാം. ഗണസിദ്ധാന്തത്തിലുള്ള സമാംഗ, ക്രമ ബന്ധങ്ങൾ ഗണിതശാസ്ത്രത്തിൽ എല്ലാ മേഖലകളിലും ഉപയോഗിച്ച് വരുന്നു. ഗണസിദ്ധാന്തത്തെ ഗണിതശാസ്ത്രത്തിന്റെ അടിസ്ഥാനവ്യവസ്ഥയായി പരിഗണിക്കാം. പ്രിൻസിപ്പിയ മാത്തമെറ്റിക്കയുടെ ഒന്നാം പതിപ്പു പുറത്തിറങ്ങിയതു മുതൽ, ഏറെക്കുറെ എല്ലാ സിദ്ധാന്തങ്ങളെയും ഗണസിദ്ധാന്തത്തിലെ സ്വയംപ്രമാണങ്ങളുട അടിസ്ഥാനത്തിൽ വിശദീകരിക്കാമെന്ന് കരുതപ്പെടുന്നു. ഉദാഹരണമായി എണ്ണൽ സംഖ്യകളെയും രേഖീയസംഖ്യകളെയും ഓരോ അനന്തഗണമായി നിർവചിക്കാം. പഠനമേഖലകൾഗണസിദ്ധാന്തം ഗണിതശാസ്ത്രത്തിലെ ഒരു പ്രധാന പഠന, ഗവേഷണമേഖലയാണ്.
ഇതും കൂടി കാണുകഅവലംബം
|
Portal di Ensiklopedia Dunia