ഗണിതത്തിന്റെ ഉത്ഭവം![]() ![]() മനുഷ്യർ സ്വയുക്തമാക്കിയ എണ്ണമെന്ന അമൂർത്ത സങ്കല്പത്തിൽ നിന്നുമാണ് ഗണിതശാസ്ത്രത്തിന്റെ തുടക്കം. തുടർന്നിങ്ങോട്ടു് നിരന്തരമായി കൂടിക്കൊണ്ടിരിക്കുന്ന അമൂർത്തതതകളുടെ ശ്രേണിയായി ഗണിതശാസ്ത്രത്തിന്റെ ചരിത്രത്തെ കാണാം. എണ്ണമെന്ന അമൂർത്ത സങ്കല്പം മറ്റുപല ജീവികളും സ്വായത്തമാക്കിയിട്ടുണ്ട് [2]. ഉദാഹരണത്തിന് രണ്ട് മാങ്ങയിലും, രണ്ട് തേങ്ങയിലും പൊതുവായുള്ള ഒരു കാര്യം അവയുടെ എണ്ണമാണ്. ചരിത്രാതീതകാലത്തെ മനുഷ്യർ വസ്തുക്കളെ കൂടാതെ, ദിവസങ്ങൾ, കൊല്ലങ്ങൾ, സൂര്യചക്രമണം തുടങ്ങിയ അമൂർത്ത സംഖ്യകൾ എണ്ണാനുള്ള ശേഷികൂടി വികസിപ്പിച്ചെടുത്തിരുന്നു. പുരാതന മനുഷ്യർ എല്ലുകളാലുണ്ടാക്കിയ അളവുകോലുകളിൽ നിന്നും ഇതു് മനസ്സിലാക്കിയിട്ടുണ്ട്[3] ശബ്ദോല്പത്തിഗണിതശാസ്ത്രത്തിനു് വ്യാപകമായി ഉപയോഗിക്കുന്ന പദമായ മാത്താമാറ്റിക്സ്, പുരാതന ഗ്രീസിൽ നിന്നും രൂപംകൊണ്ടതാണ്. പഠിച്ചതെതാണോ അത്, അറിയേണ്ട കാര്യങ്ങൾ, പഠനം, ശാസ്ത്രം എന്നൊക്കെ അർത്ഥം കല്പിക്കാവുന്ന μάθημα (മാത്തെമ)[4] എന്ന പദമാണ് അതിന്റെ ധാതുരൂപം. പുരാതനകാലം മുതൽതന്നെ മാത്താമാറ്റിക്സ് എന്ന പദത്തിന് ഗണിതപഠനമെന്ന സവിശേഷ അർത്ഥം കൈവന്നിരുന്നു[5].
ഗണിതശാസ്ത്ര വികാസം വിവിധ സംസ്കാരങ്ങളിലൂടെ![]() ![]() ![]() എല്ലാ ലോക സംസ്ക്കാരങ്ങളുടെയും വളർച്ചയുടെ കൂടെ കുറച്ചു ഗണിതവും വളർന്നിട്ടുണ്ട്. ചിലപ്പോഴെല്ലാം, ഗണിതം ഒരു സംസ്ക്കാരത്തിൽ നിന്നു മറ്റു സംസ്ക്കാരങ്ങളിലേയ്ക്കു പകർന്നു പോയിട്ടുണ്ട്. ഇപ്പോൾ ലോകമാസകലം ഗണിതശാസ്ത്രം ഒരൊറ്റ ശാസ്ത്രശാഖയായി നിലകൊള്ളുന്നുവെങ്കിലും, അതിന്റെ പിന്നിൽ ബൃഹത്തായ ചരിത്രമുണ്ട്. അതിന്റെ വേരുകൾ പുരാതന ഈജിപ്തിലും, ബാബിലോണിയയിലും, ഇന്ത്യയിലുമാണെങ്കിലും, ധൃതഗതിയിലുള്ള വളർച്ച പുരാതന ഗ്രീസിലായിരുന്നു. പുരാതന ഗ്രീസിൽ ഗണിതം അറബിയിലേയ്ക്കു വിവർത്തനം ചെയ്യപ്പെടുകയും, അതേ സമയം തന്നെ പുരാതനഭാരത ഗണിതവും അറബിയിലേക്ക് വിവർത്തനം ചെയ്യപ്പെടുകയും ചെയ്തു. പിന്നീടു് ഈ അറിവുകൾ ലാറ്റിൻ ഭാഷയിലേക്ക് വിവർത്തനം ചെയ്യുകയും പടിഞ്ഞാറൻ യൂറോപ്പിൽ എത്തുകയും ചെയ്തു. അനേകം വർഷങ്ങളിലൂടെ അതു ലോകത്തിന്റെ സമ്പത്താവുകയും ചെയ്തു. ഗണിതസമ്പ്രദായങ്ങൾ ഗവേഷണപഠനങ്ങൾക്ക് വളരെ പ്രയോജനപ്രദമാണെന്ന് തിരിച്ചറിഞ്ഞത് ധനതത്വശാസ്ത്രജ്ഞരാണ്.വില,ആവശ്യം,ലഭ്യത,ഉപയോഗം തുടങ്ങിയ അടിസ്ഥാന ആശയങ്ങളും ഇവ തമ്മിലുള്ള ബന്ധവും ഗണിതപ്രതീകങ്ങളുപയോഗിച്ച് ചിത്രീകരിച്ചാൽ എളുപ്പവും സൂക്ഷ്മവുമാകുമെന്ന് കണ്ടെത്തി.അപ്രകാരം ഗണിതീയ ധനതത്വശാസ്ത്രം എന്നൊരു ശാസ്ത്രശാഖക്ക് രൂപം നൽകി.ധനതത്വശാസ്ത്രമേഖലയിൽ ഗണിതത്തിന്റെ പ്രയോഗം വഴിയുണ്ടായ നേട്ടങ്ങൾ മറ്റെല്ലാ വിജ്ഞാനശാഖകളിലേക്കും ഗണിതശാസ്ത്രം പ്രചരിക്കുവാനിടയാക്കി.ചുരുക്കത്തിൽ ഇന്ന് എല്ലാ ശാഖകളും ഗണിതശാസ്ത്രത്തിന്റെ അനുപ്രയുക്ത മേഖലകളായി മാറി. മെസ്സൊപ്പൊട്ടോമിയയിലും ബാബിലോണിയയിലുമാണ് ചരിത്രത്തിൽ ഗണിതശാസ്ത്രശാഖ വികസിച്ചിരുന്നത്.ചുട്ടെടുത്ത കളിമൺ ഇഷ്ടികകളിൽ രേഖപ്പെടുത്തി വെച്ചിരുന്ന ഇവരുടെ ശാസ്ത്രവിജ്ഞാനം വായിച്ചെടുത്തിട്ടുണ്ട്. ബി.സി 2100നു മുൻപ് എഴുതപ്പെട്ടിരിയ്ക്കുന്ന ഇവ കാണിക്കുന്നത് സ്ഥാനവില ഉപയോഗിച്ച് സംഖ്യകൾ സൂചിപ്പിയ്ക്കുന്ന രീതി അന്ന് നിലവിലിരുന്നു എന്നതാണ്.അവർ ഉപയോഗിച്ചിരുന്നത് 60ന്റെ ഘാതങ്ങളായിരുന്നു.മരത്തൊലിയിൽ രേഖപ്പെടുത്തിയ കൈയെഴുത്തുഗ്രന്ഥം പൗരാണികഭാരതത്തിലെ ഗണിതവിജ്ഞാനത്തിന് സാക്ഷ്യം നൽകുന്നു. ബാബിലോണിയയിൽ![]() ഇഷ്ടികകളിൽ ക്യൂണിഫോം ലിപിയിൽ എഴുതപ്പെട്ട വാണിജ്യവിഷയങ്ങളായിരുന്നു ബാബിലോണിയയിൽ ആദ്യകാലങ്ങളിൽ ഉണ്ടായിരുന്നത്.ഏകദേശം ബി.സി 3000നു ശേഷമുള്ള രേഖകൾ ആണ് കണ്ടുകിട്ടിയിരിയ്ക്കുന്നത്.ഇവരുടെ സംഖ്യാസമ്പ്രദായം 60നെ അടിസ്ഥാനമാക്കിയായിരുന്നു.ഒരു വൃത്തത്തെ 360ഡിഗ്രി വീതമാക്കി ഇവർ വിഭജിച്ചു.ഒരു ദിവസത്തെ 24മണിക്കൂറായും ഒരു മണിക്കൂറിനെ 60 മിനുട്ടായും ഒരു മിനുട്ടിനെ 60സെക്കന്റായും ഇവർ വിഭജിച്ചിരുന്നു.1മുതൽ 9വരെ സംഖ്യകളെ അടയാളപ്പെടുത്തുന്ന രീതി ഇവർ അവലംബിച്ചുപോന്നു.വ്യുൽക്രമങ്ങളുടേയും വർഗ്ഗങ്ങളുടേയും വർഗ്ഗമൂലങ്ങളുടേയും ഘാതങ്ങളുടേയും കൂട്ടുപലിശ കണക്കാക്കുന്നതിനുള്ള പട്ടികയുമെല്ലാം ഇവർ നിർമ്മിച്ചിരുന്നു.ബി.സി 700ന്റെ ആരംഭത്തിൽ ചന്ദ്രനെപ്പറ്റിയും ഗ്രഹങ്ങളെപ്പറ്റിയും പഠനം നടത്തി.ത്രികോണങ്ങളുടെ വശങ്ങളെ സംബന്ധിച്ച പഠനങ്ങളും ഇവർ നടത്തിയിരുന്നു. ഈജിപ്തിൽപാപ്പിറസ് രേഖകളിൽ നിന്നും കിട്ടിയ വിവരമനുസരിച്ച് ബി.സി1800നോടടുത്ത് രചിയ്ക്കപ്പെട്ടവയാണിവ.ഇതിൽ പ്രധാനമായും അങ്കഗണിതത്തിലേയും ക്ഷേത്രഗണിതത്തിലേയും പ്രശ്നങ്ങളാണ് കാണാവുന്നത്.10ന്റെ തുടർച്ചയായ കൃതികളെ സൂചിപ്പിക്കാൻ 1,10,100 എന്നിങ്ങനെ പ്രത്യേക ഹൈറോഗ്ലിഫിക്സ് ലിപി ഉപയോഗിച്ചു.5നെ സൂചിപ്പിക്കാൻ 1 അഞ്ച് തവണയും300നെ സൂചിപ്പിക്കാൻ 100 മൂന്നുതവണയും ആണ് പ്രതീകങ്ങൾ ഉപയോഗിച്ചിരുന്നത്.ക്ഷേത്രഗണിതത്തിൽ വൃത്തം,ചതുരം,ത്രികോണം ഇവയുടെ വിസ്തീർണ്ണം കണ്ടെത്താനും ചിലവയുടെ വ്യാപ്തങ്ങൾ കണ്ടെത്താനും സൂത്രവാക്യങ്ങൾ ഉണ്ടാക്കിയിരുന്നു. ഗ്രീസിൽ![]() ബാബിലോണിയയിലേയും ഈജിപ്തിലേയും ഗണിതത്തെ അവലംബിച്ചാണ് പുരാതന ഗ്രീസ് ഗണിതശാസ്ത്രം വളർന്നത്.അമൂർത്ത ഗണിതശാസ്ത്രത്തിന്റെ വികാസമായിരുന്നു ഗ്രീക്ക് ഗണിതശാസ്ത്രത്തിന്റെ സംഭാവന.സ്വയംസിദ്ധപ്രമാണങ്ങളും തെളിവുകളും നിരത്തി നിഗമനരീതിയാണ് ഇവർ തുടർന്നുപോന്നത്.ഇക്കാലത്ത് ഥേൽസും പൈത്തഗോറസ്സും ആണ് പ്രമുഖർ.ഏതൊരു നാഗരികതയും നിഗമനരീതി അവലംബിച്ചിരുന്നില്ല എന്നത് ശ്രദ്ധിയ്ക്കപ്പെടേണ്ട ഒരു വസ്തുതയാണ്. ക്രി.മു. 6-ാം നൂറ്റാണ്ടിൽ പൈത്തഗോറിയൻ ചിന്തയുടെ തുടക്കത്തോടെ പുരാതന ഗ്രീക്കുകാർ, ഗൗരവകരമായതും, ചിട്ടയോടുകൂടിയതുമായ ഗണിതപഠനത്തിലേക്ക് കടന്നു [7]. നിർവചനം, പ്രചാരം, സിദ്ധാന്തം, തെളിവ് എന്നിവ അടങ്ങുന്ന ഗണിതശാസ്ത്രത്തിൽ ഇന്നുപയോഗിക്കുന്ന വിശകലന രീതി ക്രി.മു. 300 ൽ, യൂക്ലിഡ് അവതരിപ്പിച്ചു. അദ്ദേഹം എഴുതിയ പാഠപുസ്തക എലമെന്റ്സ് ഇന്നും ഏറെ സ്വാധീനമുള്ളതുമായ അടിസ്ഥാന ഗണിത ഗ്രന്ഥമായി കണക്കാക്കപ്പെടുന്നു. എറ്റവും പ്രഗല്ഭനായ പുരാതന ഗണിതശാസ്ത്രജ്ഞനായി കണക്കാക്കപ്പെടുന്നതു ആർക്കിമിഡീസിനെയാണ് [8]. ഇറ്റലിയിലെ പുരാതന പട്ടണമായിരുന്ന സിറാക്കൂസയിൽ, ക്രി.മു. 287 മുതൽ 212 വരെയാണ് അദ്ദേഹത്തിന്റെ ജീവിത കാലഘട്ടം. ത്രിമാന വസ്തുക്കളുടെ ഉപരിതല വിസ്താരം, കരങ്ങുന്ന വസ്തുക്കളുടെ വിസ്ഥാപന രീതികൾ ഉപയൗഗിച്ച് വ്യാപ്തം എന്നിവ കണ്ടുപിടിക്കാനുള്ള രീതികൾ അദ്ദേഹം വികസിപ്പിച്ചു. ആധുനിക കലനത്തിൽ നിന്നും ഏറെയൊന്നും വ്യത്യസ്തമല്ലാത്ത രീതിയിൽ, പരാബോള ചാപങ്ങൾക്കടിയിലെ പരപ്പളവ്, അനന്ത ശ്രേണികളുടെ തുകവെച്ച് കണക്കാക്കുന്ന രീതിയും അദ്ദേഹം വികസിപ്പിച്ചു. അപ്പോളോണിയസ് വികസിപ്പച്ചെടുത്ത കോണീയ വസ്തുക്കളുടെ ഗണിതം [9], ഹിപ്പാർക്കസ് വികസിപ്പിച്ചെടുത്ത ത്രികോണമിതി എന്നിവയും പുരാതന ഗ്രീക്കിന്റെ സംഭാവനകളാണ് [10]. ഡയോഫാന്റസ് ബീജഗണിതത്തിന് തുടക്കമിട്ടതും പുരാതന ഗ്രീക്കിൽ നിന്നുമാണ് [11] റോമിൽഗണ്യമായ സംഭാവന റോമൻ സംഖ്യാസമ്പ്രദായം ആണ്.എന്നാൽ കണക്കുകൂട്ടുമ്പോൾ അനുഭവപ്പെടുന്ന ന്യൂനതകൾ ഇവയെ അപ്രധാനങ്ങളാക്കി.എന്നിരുന്നാലും, ഈ സമ്പ്രദായം ചിലയിടങ്ങിൽ തുടർന്നുപോരുന്നു. പുരാതന ഇന്ത്യയിൽക്രിസ്തുവിനു് മുമ്പ് 6-ാം നൂറ്റാണ്ടിനു മുൻപുതന്നെ ഇന്ത്യയിൽ ഗണിതശാസ്ത്രം വളരേയേറെ പുരോഗതി പ്രാപിച്ചിരുന്നു.സുല്യസൂത്രങ്ങൾ എന്ന ക്ഷേത്രഗണിതഗ്രന്ഥങ്ങൾ എഴുതപ്പെട്ടത് ഇക്കാലത്താണ്.ഋഗ്വേദസംഹിത,തൈത്തിരീയ ബ്രാഹ്മണം തുടങ്ങിയ അതിപുരാതനഗ്രന്ഥാങ്ങളിൽ സൂചിപ്പിച്ചിട്ടുള്ളതായിരുന്നു ഇവ.പല ജ്യാമിതീയരൂപങ്ങളെക്കുറുച്ചും അവയുടെ നിർമ്മിതിയെക്കുറിച്ചുമെല്ലാം ഇതിൽ പ്രതിപാദിയ്ക്കുന്നു.വ്യത്യസ്തമായൊരു സമീപനത്തോടെ യൂക്ലിഡ് പിൽക്കാലത്ത് ഇവ വിശദീകരിയ്ക്കുന്നുണ്ട്.ജൈനമതത്തിന്റെ ആവിർഭാവവും ഗണിതപഠനത്തെ പ്രോത്സാഹിപ്പിച്ചു.ഭാരതീയ ഗണിതശാസ്ത്രകാരന്മാർ ഗണിതസാരസംഗ്രഹം എന്ന ഗ്രന്ഥത്തിന്റെ കർത്താവായ മഹാവീരൻ ശുദ്ധഗണിതത്തിൽ പ്രഗൽഭനായിരുന്നു[12][13]. ഇവിടുത്തെ ഏറ്റവുംര്രദ്ധേയമായ സംഭാവന പൂജ്യത്തിന്റെ ഉപയോഗമാണ്. ഇന്ത്യയിലെ ഗണിതവിദ്യക്ക് അറബികൾ ഹിന്ദിസാറ്റ് എന്നായിരുന്നു വിളിച്ചിരുന്നത്[14]. പൈ (π) എന്ന ചിഹ്നത്തിന്റെ കൃത്യമായ മൂല്യനിർണ്ണയം, കാല്ക്കുലസ്, ജഗണിതം ത്രികോണമിതി എന്നീ മേഖലകളിൽ കേരളത്തിൽ ഇന്നത്തെ ഇരിഞ്ഞാലക്കുടയ്ക്ക് അടുത്ത് ജീവിച്ചിരുന്ന മാധവാചാര്യന്റെ സംഭാവനകൾ പിന്നീട് ഭാരതത്തിലെയും പാശ്ചാത്യരാജ്യങ്ങളിലെയും ശാസ്ത്രവികസനത്തിനെ സഹായിച്ചിട്ടുണ്ടത്രെ[15] ഇസ്ലാമിക ഗണിതം![]() ക്രിസ്തുവിന് ശേഷം എട്ടാം നൂറ്റാണ്ട് മുതൽ 15ാം നൂറ്റാണ്ട് വരെയുള്ള കാലം ശാസ്ത്രരംഗത്തെ ഇസ്ലാമിൻെറ സുവർണ കാലഘട്ടമായി അറിയപ്പെടുന്നു. പേർഷ്യ, മദ്ധ്യപൂർവ രാജ്യങ്ങൾ, മദ്ധ്യ ഏഷ്യ, വടക്കേ ആഫ്രിക്ക, ലൈബീരിയ, ഇന്ത്യയുടെ ഭാഗങ്ങൾ എന്നിവങ്ങളിൽ എട്ടാം നൂറ്റാണ്ടിലുണ്ടായിരുന്ന ഇസ്ലാമിക് സംസകാരം ഗണിതശാസ്ത്രത്തിന് പ്രധാന സംഭാവനകൾ നൽകി. പുരാതന ഗ്രീസിന്റെയും പുരാതന ഇന്ത്യയുടെയും ഗണിതശാസ്ത്ര മുന്നേറ്റങ്ങളെ ഇണക്കിച്ചേർക്കാൻ അവർക്ക് സാധിച്ചു ഇസ്ലാമിന്റെ സുവർണ്ണ കാലഘട്ടത്തിൽ, പ്രത്യേകിച്ചും ക്രിസ്തുവിനു ശേഷം 9, 10 നൂറ്റാണ്ടുകളിൽ ഗണിതശാസ്ത്രരംഗത്ത് കാതലായ മുന്നേറ്റങ്ങളും, കണ്ടുപിടിത്തങ്ങളും അറവ് നാടുകളിൽ നിന്നുമുണ്ടായി. ഇവരുടെ ഗവേഷണത്താൽ ബീജഗണിത രംഗത്തുണ്ടായ മുന്നേറ്റം വളരെ ശഅരദ്ധായമാണ്. ആൾജിബ്ര എന്ന പദം ഇവരുടെ സംഭാവനയാണ്. ക്രിസ്തുവിന് ശേഷം 9, 10 നൂറ്റാണ്ടുകളിൽ ബീജഗണിത നിർദ്ധാരണങ്ങളിലും ബഹുപദങ്ങളിലും എല്ലാം ഇവർ ഗവേഷണങ്ങൾ നടത്തി.കോണികങ്ങൾ ഉപയോഗിച്ച് ത്രിഘാതസമവാക്യങ്ങൾ നിർദ്ധാരണം ചെയ്ത. ഗോളീയ ത്രകോണമിതി, ദശാംശ സ്ഥാനങ്ങൾ എന്നിവയും ഈ കാലഘട്ടത്തിൽ, അറ സമൂഹത്തിൽ നിന്നുണ്ടായ ശ്രദ്ധേയമായ സംഭാവനകളാണ്. പേർഷ്യൻ വംശജനായ അൽ-ഖ്വാരിസ്മി, ഒമർ ഖയ്യാം. ശറഫ് അൽദിൻ അൽതൂസി എന്നിവർ അക്കാലത്തെ പ്രഗല്ഭ ഗണിതശാസ്ത്രകാരനായിരുന്നു അറബ് മേഖലയിൽ ഗണിതശാസ്ത്രത്തിനുണ്ടായ വികാസം, 12-ാം നൂറ്റാണ്ടിൽ, യൂറോപ്പിലേക്ക് വ്യാപിക്കുകയും. അവിടത്തെ ഗണിതശാസ്ത്ര ഗവേഷണങ്ങൾക്ക് ആക്കം കൂട്ടുകയും ചെയ്തു. [16]. 5-ാം നൂറ്റാണ്ടു മുതൽ 16-ാം നൂറ്റാണ്ടു വരെഗ്രീസിലും അറബിരാജ്യങ്ങളിലും ഗണിതശാസ്ത്രത്തിൽ ഉണ്ടായ പുരോഗതി പാശ്ചാത്യരാജ്യങ്ങളിൽ ഉണർവ്വേകി.മദ്ധ്യകാലഘട്ടങ്ങളിൽ ഗണിതശാസ്ത്രം ജ്യോതിഷത്തിൽ പ്രയോഗിയ്ക്കാനാണ് ശ്രദ്ധിച്ചത്. ഇറ്റാലിയൻ ഗണിതശാസ്ത്രജ്ഞന്മാരായ ലിയോനാർഡോ ഫിബനോസി,ലൂക പസോളി എന്നിവർ വ്യാപാരകാര്യങ്ങളിൽ ഗണിതശാസ്ത്രം പ്രയോഗിക്കാൻ ശ്രദ്ധിച്ചു.അറബിക് സംഖ്യകളും അറബി-ഹിന്ദു ദശാംശസമ്പ്രദായങ്ങളുമെല്ലാം ഫിബനോസി പാശ്ചാത്യലോകത്തിന് പരിചയപ്പെടുത്തി.അനന്തശ്രേണികൾ ഇക്കാലത്താണ് പഠനങ്ങൾക്ക് വിധേയമാകുന്നത്.രണ്ടാം കൃതിയിലോ മൂന്നാം കൃതിയിലോ ഉള്ള സമവാക്യങ്ങളെ നിർദ്ധാരണം ചെയ്യാനുള്ള സൂത്രവാക്യം കണ്ടുപിടിക്കുകയും തുടർന്ന് സമ്മിശ്രസംഖ്യകൾ രൂപപ്പെടുത്തുകയും ചെയ്തു.കൂടുതൽ സൂക്ഷ്മമായി രേഖപ്പെടുത്താനും മനസ്സിലാക്കുന്നതിനും ചിഹ്നങ്ങൾ ഉപയോഗിച്ചുതുടങ്ങിയത് 16ആം നൂറ്റാണ്ടിലാണ്.+,-,X,=,>,< ഇവയായിരുന്നു ചിഹ്നങ്ങൾ.സമവാക്യങ്ങളിൽ ചരങ്ങൾ ഉപയോഗിയ്ക്കാൻ തുടങ്ങി. 16-ാം നൂറ്റാണ്ടു മുതൽ 19-ാം നൂറ്റാണ്ടു വരെശാസ്ത്രവിപ്ലവം നടന്ന കാലഘട്ടമാണ് 17-ാം നൂറ്റാണ്ട്.ഇക്കാലത്ത് ന്യൂട്ടൺ,കെപ്ലർ,കോപ്പർ നിക്കസ്,ഗലീലിയൊ തുടങ്ങിയവർ ഗണിതശാസ്ത്രത്തെ അടിസ്ഥാനമാക്കി തങ്ങളുടെ പഠനങ്ങൾ നടത്തി.ഗലീലിയോ വ്യാഴത്തിന്റെ ഉപഗ്രഹങ്ങളെ കണ്ടെത്തി.റ്റൈക്കോ ബ്രാഹെ ഗ്രഹങ്ങളുടെ സ്ഥാനത്തെക്കുറിച്ചുള്ള വിവരങ്ങൾ ഗണിതദത്തങ്ങളുടെ സഹായത്തോടെ അവതരിപ്പിച്ചു.ഇദ്ദേഹത്തിന്റെ ശിഷ്യനായിരുന്ന ജോഹന്നാസ് കെപ്ലർ ഈ ദത്തങ്ങളുപയോഗിച്ച് പഠനം നടത്തുകയും ഗ്രഹചലനങ്ങളെപ്പറ്റിയുള്ള ഗണിതീയവാക്യങ്ങൾ രൂപപ്പെടുത്തുകയും ചെയ്തു.റെനെ ദെക്കർത്തേയാണ് പരിക്രമണപഥങ്ങളെയെല്ലാം നിർദ്ദേശാങ്കങ്ങളുടെ സഹായത്തോടെ ചിത്രീകരിച്ചത്.ന്യൂട്ടൺ കലനശാസ്ത്രത്തിന് ആരംഭം കുറിയ്ക്കുകയും ലെബ്നിസ് പോഷിപ്പിയ്ക്കുകയും ചെയ്തു. പൊരുത്തപ്പെടുത്തൽഎണ്ണമില്ലാത്ത കാലത്ത് മനുഷ്യൻ തന്റെ ആവശ്യങ്ങളെ നേരിട്ടിരുന്നത് ഒന്നിനൊന്ന് പൊരുത്തപ്പെടുത്തിയിട്ടായിരുന്നു.വസ്തുക്കളും കല്ലുകളും തമ്മിൽ പൊരുത്തപ്പെടുത്തുകയായിരുന്നു ആദിമ മനുഷ്യർ ചെയ്തിരുന്നത്.പിൽകാലത്ത്, കമ്പുകളിൽ അടയാളമിടുന്ന സമ്പ്രദായവും ചരടുകളിൽ കെട്ടുകളിടുന്ന സമ്പ്രദായവും സ്വീകരിച്ചിരുന്നു. സംഖ്യകൾ രൂപം കൊള്ളുന്നുകാലക്രമത്തിൽ അടയാളങ്ങൾക്കു പകരം ശബ്ദങ്ങളുപയോഗിച്ചു തുടങ്ങി. അവയാണ് ചരിത്രത്തിലെ ആദ്യത്തെ സംഖ്യാനാമങ്ങൾ. നൂറ്റാണ്ടുകൾക്കോ സഹസ്രാബ്ദങ്ങൾക്കോ ശേഷമായിരിക്കണം ശബ്ദം രേഖപ്പെടുത്തുന്നതിന് പ്രതീകങ്ങളുപയോഗിക്കുക എന്ന രീതി നിലവിൽ വന്നത്. പ്രാചീന പെറുവിലെ കാനേഷുമാരി(ജനസംഖ്യാകണക്കെടുപ്പ്)
|
Portal di Ensiklopedia Dunia