ഡിഗ്രി (കോൺ)
![]() എൺപത്തിയൊമ്പത് ഡിഗ്രി നീല നിറത്തിലും കാണിച്ചിരിക്കുന്നു ഡിഗ്രി (പൂർണ്ണമായി, ആർക്ക് അല്ലെങ്കിൽ ആർക്ക് ഡിഗ്രി) എന്നത് സാധാരണയായി ° (ഡിഗ്രി ചിഹ്നം) കൊണ്ട് സൂചിപ്പിക്കുന്ന പ്രതല കോണിന്റെ അളവാണ്. പൂർണ്ണമായി കറങ്ങിവന്നാൽ ഈ അളവ് 360 ഡിഗ്രിയാണ്.[4][5] ഡിഗ്രി യഥാർഥത്തിൽ ഒരു എസ്ഐ യൂണിറ്റല്ല, കോണീയ അളവിന്റെ എസ്ഐ യൂണിറ്റ് റേഡിയൻ ആണ്. പക്ഷേ, ഡിഗ്രിയെ എസ്ഐ ബ്രോഷറിൽ ഒരു സ്വീകാര്യമായ യൂണിറ്റായി പരാമർശിക്കുന്നുണ്ട്. ഒരു പൂർണ്ണ ഭ്രമണം 2π റേഡിയൻസിന് തുല്യമായതിനാൽ, ഒരു ഡിഗ്രി π/180 റേഡിയൻസിന് തുല്യമാണ്. ചരിത്രം![]() ഭ്രമണങ്ങളുടെയും കോണുകളുടെയും ഒരു യൂണിറ്റായി ഡിഗ്രി തിരഞ്ഞെടുക്കുന്നതിനുള്ള യഥാർത്ഥ പ്രചോദനം അജ്ഞാതമാണ്. ഒരു സിദ്ധാന്തം പറയുന്നത് ഡിഗ്രിയുടെ തിരഞ്ഞെടുപ്പിന് കാരണം, 360 എന്നത് ഒരു വർഷത്തിലെ ഏകദേശം ദിവസങ്ങളുടെ എണ്ണമാണ് എന്നതിനാലാണെന്നാണ്.[5] പുരാതന ജ്യോതിശാസ്ത്രജ്ഞർ, വർഷത്തിലുടനീളം എക്ലിപ്റ്റിക് പാതയിലൂടെ സഞ്ചരിക്കുന്ന സൂര്യൻ ഓരോ ദിവസവും, ഏകദേശം ഒരു ഡിഗ്രി മുന്നേറുന്നതായി കണ്ടെത്തിയിരുന്നു. പേർഷ്യൻ കലണ്ടർ, ബാബിലോണിയൻ കലണ്ടർ പോലുള്ള ചില പുരാതന കലണ്ടറുകളിൽ 360 ദിവസം ചേരുന്നനത് ആയിരുന്നു ഒരു വർഷം. 360 ദിവസമുള്ള ഒരു കലണ്ടറിന്റെ ഉപയോഗം സെക്സാജെസിമൽ സംഖ്യകളുടെ ഉപയോഗവുമായി ബന്ധപ്പെട്ടിരിക്കാം എന്ന് കരുതപ്പെടുന്നു. മറ്റൊരു സിദ്ധാന്തം, ബാബിലോണിയക്കാർ വൃത്തത്തെ ഒരു സമഭുജ ത്രികോണത്തിന്റെ കോണിനെ ഉപയോഗിച്ച് അടിസ്ഥാന യൂണിറ്റായി വിഭജിച്ചു എന്നാണ്, അതിനെ അവരുടെ സെക്സാജെസിമൽ സംഖ്യാ സമ്പ്രദായത്തെ തുടർന്ന് 60 ഭാഗങ്ങളായി വീണ്ടും വിഭജിച്ചു.[7][8] ബാബിലോണിയൻ ജ്യോതിശാസ്ത്രജ്ഞരും അവരുടെ ഗ്രീക്ക് പിൻഗാമികളും ഉപയോഗിച്ച ആദ്യകാല ത്രിഗുണമിതി ഒരു വൃത്തത്തിന്റെ കോഡുകളെ അടിസ്ഥാനമാക്കിയുള്ളതാണ്. അരിസ്റ്റാർക്കസ് ഓഫ് സമോസും ഹിപ്പാർക്കസും, ബാബിലോണിയൻ ജ്യോതിശാസ്ത്ര പരിജ്ഞാനവും സാങ്കേതികതകളും വ്യവസ്ഥാപിതമായി ഉപയോഗപ്പെടുത്തിയ ആദ്യകാല ഗ്രീക്ക് ശാസ്ത്രജ്ഞരാണെന്ന് കരുതുന്നു.[9][10] ടിമോചാരിസ്, അരിസ്റ്റാർക്കസ്, അരിസ്റ്റില്ലസ്, ആർക്കിമിഡീസ്, ഹിപ്പാർക്കസ് എന്നിവരാണ് 60 ആർക്ക് മിനിറ്റിന്റെ 360 ഡിഗ്രിയിൽ വൃത്തത്തെ വിഭജിച്ച ആദ്യത്തെ ഗ്രീക്കുകാർ.[11] ഒരു വൃത്തത്തെ 60 ഭാഗങ്ങളായി വിഭജിക്കുന്ന ലളിതമായ സെക്സാജെസിമൽ സമ്പ്രദായമാണ് എറാത്തോസ്റ്റെനെസ് ഉപയോഗിച്ചത്. വൃത്തത്തെ 360 ഭാഗങ്ങളായി വിഭജിക്കുന്ന രീതി പുരാതന ഇന്ത്യയിലും രേഖപ്പെടുത്തിയിട്ടുണ്ട്, ഋഗ്വേദത്തിൽ ഇത് വ്യക്തമാണ്.[12] 360 എന്ന സംഖ്യ തിരഞ്ഞെടുക്കുന്നതിനുള്ള മറ്റൊരു പ്രചോദനം അത് എളുപ്പത്തിൽ വിഭജിക്കാവുന്നതാണ് എന്നതുമാവാം: 360 ന് 24 ഡിവൈസറുകൾ ഉണ്ട്.[13][14] കൂടാതെ, 7 ഒഴികെ 1 മുതൽ 10 വരെയുള്ള എല്ലാ സംഖ്യകളാലും ഇത് വിഭജിക്കപ്പെടുന്നു.[note 1] ലോകത്തെ 24 സമയ മേഖലകളായി വിഭജിക്കുന്നത് പോലുള്ള ഉപയോഗപ്രദമായ നിരവധി ആപ്ലിക്കേഷനുകൾ ഈ രീതിക്കുണ്ട്. ഉപവിഭാഗങ്ങൾപല പ്രായോഗിക ആവശ്യങ്ങൾക്കും, ഡിഗ്രി മതിയായ കൃത്യത നൽകുന്ന ഒരു ചെറിയ കോണാണ്. കൂടുതൽ കൃത്യതയോടെ രേഖപ്പെടുത്താൻ, ജ്യോതിശാസ്ത്രത്തിലോ ഭൂമിശാസ്ത്രപരമായ കോർഡിനേറ്റുകളിലോ (അക്ഷാംശവും രേഖാംശവും) ഡിഗ്രി അളവുകൾ ദശാംശ ഡിഗ്രികൾ ഉപയോഗിച്ച് എഴുതാറുണ്ട്, ഉദാഹരണത്തിന്, 40.1875°. പകരമായി, പരമ്പരാഗത സെക്സാജെസിമൽ യൂണിറ്റ് ഉപവിഭാഗങ്ങളും ഉപയോഗിക്കാം. അതായത്, ഒരു ഡിഗ്രിയെ 60 മിനിറ്റ് (ആർക്ക്), ഒരു മിനിറ്റിനെ 60 സെക്കൻഡ് (ആർക്ക്) എന്നിങ്ങനെ തിരിച്ചിരിക്കുന്നു. ഡിഗ്രി-മിനിറ്റ്-സെക്കൻഡ് ഉപയോഗത്തെ ഡിഎംഎസ് നൊട്ടേഷൻ എന്നും വിളിക്കുന്നു. ആർക്ക് മിനിറ്റ് ആർക്ക് സെക്കന്റ് എന്നും വിളിക്കപ്പെടുന്ന ഈ ഉപവിഭാഗങ്ങളെ യഥാക്രമം ഒരൊറ്റ പ്രൈം ('), ഇരട്ട പ്രൈം (") എന്നിവ ഉപയോഗിച്ച്[4] (ഉദാഹരണത്തിന്, 40.1875° = 40° 11′ 15″), അല്ലെങ്കിൽ, ഉദ്ധരണി അടയാളം ഉപയോഗിച്ച് സൂചിപ്പിക്കുന്നു. ആർക്ക് സെക്കന്റ് ഘടകങ്ങൾക്ക് ദശാംശങ്ങൾ ഉപയോഗിച്ച് കൂടുതൽ കൃത്യത നൽകാം. അളവ് സുഗമമാക്കുന്നതിന് മാരിടൈം ചാർട്ടുകൾ ഡിഗ്രിയിലും ദശാംശ മിനിറ്റിലും അടയാളപ്പെടുത്തിയിരിക്കുന്നു; 1 മിനിറ്റ് അക്ഷാംശം എന്നത് 1 നോട്ടിക്കൽ മൈൽ ആണ്. ഉദാഹരണത്തിന് 40 ° 11.25′ അല്ലെങ്കിൽ 11′25 അല്ലെങ്കിൽ 11′.25 എന്നിങ്ങനെ എഴുതുന്നു).[15] ഇതര യൂണിറ്റുകൾ![]() പ്രായോഗിക ജ്യാമിതിക്ക് അപ്പുറത്തുള്ള മിക്ക ഗണിതശാസ്ത്ര ജോലികളിലും, കോണുകളെ, സാധാരണയായി ഡിഗ്രികളേക്കാൾ റേഡിയൻസിലാണ് അളക്കുന്നത്. ഇതിന് പല കാരണങ്ങളുണ്ട്; ഉദാഹരണത്തിന്, ത്രികോണമിതി ഫംഗ്ഷനുകൾക്ക് റേഡിയൻസിൽ അവയുടെ ആർഗ്യുമെന്റുകൾ പ്രകടിപ്പിക്കുമ്പോൾ ലളിതവും കൂടുതൽ "സ്വാഭാവികവുമായ" ഗുണങ്ങളുണ്ട്. ഈ പരിഗണനകൾ 360 എന്ന സംഖ്യയുടെ സൌകര്യപ്രദമായ വിഭജനത്തെ മറികടക്കുന്നു. ഒരു പൂർണ്ണമായ ടേൺ (360 °) 2 π റേഡിയൻസാണ്, അതുപോലെ 180 ° എന്നത് π റേഡിയൻസിന് തുല്യമാണ്, അല്ലെങ്കിൽ സമമായി, 1° = π⁄180. ടേൺ (അല്ലെങ്കിൽ റവലൂഷൻ, പൂർണ്ണ വൃത്തം, പൂർണ്ണ ഭ്രമണം, സൈക്കിൾ എന്നൊക്കെ പറയുന്നു) എന്ന വാക്ക് സാങ്കേതികവിദ്യയിലും ശാസ്ത്രത്തിലും ഉപയോഗിക്കുന്നുണ്ട്. ഒരു ടേൺ 360° ക്ക് തുല്യമാണ്. മെട്രിക് സമ്പ്രദായത്തിന്റെ കണ്ടുപിടുത്തത്തോടെ, പത്തിന്റെ ശക്തികളെ അടിസ്ഥാനമാക്കി, ഡിഗ്രികളെ ഗ്രേഡ് അല്ലെങ്കിൽ ഗോൺ എന്ന് വിളിക്കുന്ന ദശാംശ "ഡിഗ്രി"[note 2] ഉപയോഗിച്ച് മാറ്റിസ്ഥാപിക്കാനുള്ള ശ്രമം നടന്നു. ഇതിൽ ഒരു സമകോണം 100 ഗോണിന് തുല്യമാണ്, 400 ഗോൺ ഒരു പൂർണ്ണ വൃത്തമാകും (1° = 10⁄9 ഗോൺ). ഈ ആശയം നെപ്പോളിയൻ ഉപേക്ഷിച്ചുവെങ്കിലും, നിരവധി മേഖലകളിൽ ഗ്രേഡുകൾ ഉപയോഗിക്കുന്നത് തുടർന്നു, കൂടാതെ നിരവധി ശാസ്ത്രീയ കാൽക്കുലേറ്ററുകൾ ഇത് പിന്തുണയ്ക്കുന്നുണ്ട്. ഒന്നാം ലോകമഹായുദ്ധത്തിൽ ഫ്രഞ്ച് പീരങ്കി കാഴ്ചകൾക്കൊപ്പം ഡെസിഗ്രേഡുകൾ (1⁄4000) ഉപയോഗിച്ചിരുന്നു. ഇതും കാണുക
കുറിപ്പുകൾ
പരാമർശങ്ങൾ
പുറത്തേക്കുള്ള കണ്ണികൾ
|
Portal di Ensiklopedia Dunia