C- ചുറ്റളവ്, D- വ്യാസം R- റേഡിയസ്, O- കേന്ദ്രബിന്ദു എന്നിവയുള്ള ഒരു ഡിസ്ക്.
ജ്യാമിതിയിൽ, ഒരു വൃത്തത്തിന്റെ ഉള്ളിലുള്ള ആകെ പ്രദേശമാണ് ഡിസ്ക് എന്ന് അറിയപ്പെടുന്നത്. ഒരു ഡിസ്കിന്റെ അതിർത്തിയിൽ വൃത്തം ഉൾക്കൊള്ളുന്നുവെങ്കിൽ അത് ക്ലോസ്ഡ് ആണെന്ന് പറയുന്നു, അല്ലെങ്കിൽ ഓപ്പൺ എന്നും.[1] ജ്യാമിതി, കാൽക്കുലസ്, ടോപ്പോളജി എന്നിവയുൾപ്പെടെ ഗണിതശാസ്ത്രത്തിന്റെ വിവിധ ശാഖകളിൽ ഡിസ്ക് എന്ന ആശയം ഉപയോഗിക്കുന്നു.[2]
സൂത്രവാക്യങ്ങൾ
കാർട്ടീഷ്യൻ കോർഡിനേറ്റുകളിൽ, കേന്ദ്രവും (a, b), R ആരവും ഉള്ള ഡിസ്ക് താഴെ നൽകിയിരിക്കുന്ന സൂത്രവാക്യത്തിൽ സൂൂചിപ്പിക്കാം: [3]
അതേ കേന്ദ്രവും, ആരവും വരുന്ന ക്ലോസ്ഡ് ഡിസ്ക്
ഒരു ഡിസ്കിന്റെ ചില പ്രധാന സവിശേഷതകൾ കണ്ടെത്തുന്ന സമവാക്യങ്ങൾ ഇവയാണ്:
ഉപരിതല വിസ്തീർണ്ണം: A = πr² എന്ന സൂത്രവാക്യം ഉപയോഗിച്ചാണ് ഒരു ക്ലോസ്സ്ഡ് അല്ലെങ്കിൽ ഓപ്പൺ ഡിസ്കിൻ്റെ ഉപരിതല വിസ്തീർണ്ണം കണക്കാക്കുന്നത്, ഇവിടെ r എന്നത് ഡിസ്കിന്റെ ആരവും, π എന്നത് 3.14 ന് ഏകദേശം തുല്യമായ ഒരു ഗണിത സ്ഥിരാങ്കവുമാണ്.[4]
ചുറ്റളവ്: C = 2πr എന്ന സൂത്രവാക്യം ഉപയോഗിച്ചാണ് ഒരു ഡിസ്കിന്റെ ചുറ്റളവ് കണക്കാക്കുന്നത്, ഇതിൽ r എന്നത് ഡിസ്കിന്റെ ആരവും π എന്നത് 3.14 ന് ഏകദേശം തുല്യമായ ഒരു ഗണിത സ്ഥിരാങ്കവുമാണ്.[2]
വ്യാസം: ഒരു ഡിസ്കിന്റെ വ്യാസം അതിന്റെ മധ്യത്തിലൂടെ കടന്നുപോകുന്ന ഡിസ്കിന് കുറുകെയുള്ള ദൂരമാണ്. ഇത് ഡിസ്കിന്റെ ആരം അല്ലെങ്കിൽ വ്യാസാർദ്ധത്തിന്റെ ഇരട്ടിയായി കണക്കാക്കുന്നു, അതായത്, D = 2r.[2]
ഉപരിതല വിസ്തീർണ്ണം: ഒരു ഡിസ്കിന്റെ ഉപരിതല വിസ്തീർണ്ണം അതിന്റെ മുകളിലും താഴെയുമുള്ള മുഖങ്ങളുടെ ഭാഗങ്ങളുടെ ആകെത്തുകയാണ്, ഇത് SA = 2πr² ആണ്.[2]
വോളിയം: ഒരു ഡിസ്കിന്റെ വോളിയം എന്നത് ഡിസ്ക് അടച്ച സ്ഥലത്തിന്റെ അളവാണ്, ഇത് V = πr²h ആണ് നൽകുന്നത്, ഇവിടെ h എന്നത് ഡിസ്കിന്റെ ഉയരമാണ്.[2]
ഓപ്പൺ ഡിസ്കും ക്ലോസ്ഡ് ഡിസ്കും ടോപ്പോളജിക്കലി തുല്യമല്ല (അതായത്, അവ ഹോമിയോമോർഫിക് അല്ല). അവയ്ക്ക് വ്യത്യസ്ത ടോപ്പോളജിക്കൽ ഗുണങ്ങളാണുള്ളത്. ഉദാഹരണത്തിന്, എല്ലാ ക്ലോസ്ഡ് ഡിസ്കുകളും കോംപാക്റ്റ് ആണ്, അതേസമയം എല്ലാ ഓപ്പൺ ഡിസ്കുകളും കോംപാക്റ്റ് അല്ല. [6] എന്നിരുന്നാലും ബീജഗണിത ടോപ്പോളജിയുടെ വീക്ഷണകോണിൽ നിന്ന് അവ പല ഗുണങ്ങളും പങ്കിടുന്നു: ഇവ രണ്ടും കോൺട്രാസിബിൾ ആണ്.[7] ഇത് സൂചിപ്പിക്കുന്നത് ഇവയുടെ അടിസ്ഥാന ഗ്രൂപ്പുകൾ ട്രിവിയൽ ആണെന്നും, Z ന്റെ ഐസോമോഫിക് ആയ 0-ആമത്തേത് ഒഴികെ എല്ലാ ഹോമോളജി ഗ്രൂപ്പുകളും ട്രിവിയൽ ആണെന്നുമാണ്. ഒരു പോയിന്റിന്റെ (അതിനാൽ ഓപ്പണോ ക്ലോസ്ഡോ ആയ ഡിസ്കിന്റെ) യൂലർ സ്വഭാവം 1 ആണ്.[8]
ക്ലോസ്ഡ് ഡിസ്കിൽ നിന്ന് അതിലേക്കുള്ള എല്ലാ കണ്ടിന്യുവസ് മാപ്പിനും കുറഞ്ഞത് ഒരു നിശ്ചിത പോയിന്റെങ്കിലും ഉണ്ട് (മാപ്പ് ബൈജക്റ്റീവ് അല്ലെങ്കിൽ സർജക്റ്റീവ് ആയിരിക്കണമെന്ന് നിർബന്ധമില്ല); ഇതാണ്
ബ്രൗവർ ഫിക്സഡ് പോയിന്റ് സിദ്ധാന്തത്തിന്റെn =2. [9] ഓപ്പൺ ഡിസ്കിന്റെ കാര്യത്തിൽ ഈ പ്രസ്താവന തെറ്റാണ്: [10]
ഉദാഹരണത്തിന് ഫംഗ്ഷൻ പരിഗണിക്കുമ്പോൾ ഓപ്പൺ യൂണിറ്റ് ഡിസ്കിന്റെ ഓരോ പോയിന്റും നൽകിയിരിക്കുന്നതിന്റെ വലതുവശത്തുള്ള ഓപ്പൺ യൂണിറ്റ് ഡിസ്കിലെ മറ്റൊരു പോയിന്റിലേക്ക് ഇത് മാപ്പ് ചെയ്യുന്നു. എന്നാൽ ക്ലോസ്ഡ് യൂണിറ്റ് ഡിസ്കിന് അത് ഹാഫ് സർക്കിളിലെ ഓരോ പോയിന്റും ഫിക്സ് ചെയ്യുന്നു .
ഇതും കാണുക
യൂണിറ്റ് ഡിസ്ക്, ഒരു റേഡിയസ് ഉള്ള ഒരു ഡിസ്ക്
ആനുലസ് (ഗണിതം), രണ്ട് കേന്ദ്രീകൃത വൃത്തങ്ങൾക്കിടയിലുള്ള മേഖല
ബോൾ (ഗണിതം), ഒരു ഡിസ്കിന്റെ ത്രിമാന അനലോഗിന്റെ സാധാരണ പദം
ഡിസ്ക് ബീജഗണിതം, ഒരു ഡിസ്കിലെ പ്രവർത്തനങ്ങളുടെ ഇടം
ഓർത്തോസെൻട്രോയ്ഡൽ ഡിസ്ക്, ഒരു ത്രികോണത്തിന്റെ ചില കേന്ദ്രങ്ങൾ അടങ്ങിയിരിക്കുന്നു
↑In higher dimensions, the Euler characteristic of a closed ball remains equal to +1, but the Euler characteristic of an open ball is +1 for even-dimensional balls and −1 for odd-dimensional balls. See Klain, Daniel A.; Rota, Gian-Carlo (1997), Introduction to Geometric Probability, Lezioni Lincee, Cambridge University Press, pp. 46–50.