താരതമ്യ സോർട്ട്
a≤b, b≤a എന്നിവ രണ്ടും ശരിയാകാം. ഈ സന്ദർഭത്തിൽ ക്രമീകരണത്തിനു ശേഷം a b യ്ക്ക് മുമ്പോ പിൻപോ വരാം. അല്ലെങ്കിൽ a≤b ആണെങ്കിൽ ലിസ്റ്റിൽ ക്രമീകരണത്തിനുശേഷം a b യ്ക്ക് മുന്നിലായിരിക്കും. ഉദാഹരണങ്ങൾവ്യത്യസ്ത ഭാരങ്ങളുള്ള ഒരുകൂട്ടം വസ്തുക്കളെ അവയുടെ ഭാരത്തിന്റെ ക്രമത്തിൽ ആക്കേണ്ടതുണ്ടെന്നു വിചാരിക്കുക. രണ്ട് വസ്തുക്കളുടെ ഭാരങ്ങൾ തമ്മിൽ താരതമ്യം ചെയ്ത് ഭാരമേറിയതേത് എന്ന് മനസ്സിലാക്കാൻ സഹായിക്കുന്ന ഒരു ത്രാസ് മാത്രമേ നമ്മുടെ കയ്യിലുള്ളൂ എങ്കിൽ ആ വസ്തുക്കളെ ക്രമത്തിലാക്കാൻ ഉപയോഗിക്കുന്ന ഏത് അൽഗൊരിതവും ഒരു താരതമ്യ സോർട്ട് ആയിരിക്കും. താഴെക്കൊടുത്തിരിക്കുന്ന സോർട്ടുകൾ താരതമ്യ സോർട്ടുകളാണ്:
എന്നാൽ ഈ സോർട്ടുകൾ താരതമ്യ സോർട്ടുകളല്ല : ഗണനപരമായ സങ്കീർണ്ണതഏതൊരു താരതമ്യസോർട്ടും n അംഗങ്ങളുള്ള ഒരു ലിസ്റ്റിനെ ക്രമീകരിക്കാനെടുക്കുന്ന മോശം സമയസങ്കീർണ്ണത ചുരുങ്ങിയത് Ω(n log n) ആയിരിക്കും. തെളിവ്എല്ലാ സംഖ്യകളും വ്യത്യസ്തമായിട്ടുള്ള N നീളമുള്ള ഒരു ലിസ്റ്റ് എടുക്കുക. ഇതിലെ സംഖ്യകളെ രീതികളിൽ ക്രമീകരിക്കാം. താരതമ്യങ്ങൾ ഉപയോഗിച്ച് ഇതിലെ സംഖ്യകളെ ഊർദ്ധ്വശ്രേണിയിൽ ക്രമീകരിക്കാനാകും എന്ന് കരുതുക. ഓരോ താരതമ്യത്തിനും രണ്ട് ഉത്തരങ്ങളേ ഉണ്ടാകാവൂ (അതെ/അല്ല) എന്നതിനാൽ താരതമ്യങ്ങൾ ഉപയോഗിച്ച് ക്രമീകരണങ്ങളുടെ ഇടയിൽ മാത്രമേ വ്യത്യാസം കണ്ടെത്താനാകൂ. അതിനാൽ താരതമ്യങ്ങൾ ഉപയോഗിച്ച് ക്രമീകരണങ്ങളിൽ നിന്ന് ഊർദ്ധ്വശ്രേണി തിരഞ്ഞെടുക്കണമെങ്കിൽ : ആയിരിക്കണം. അഥവാ, എന്നാൽ സ്റ്റിർലിങ്ങ് അപ്രോക്സിമേഷൻ ഉപയോഗിച്ചാൽ എന്ന് കിട്ടുന്നു. ഇവ ഉപയോഗിച്ച് എന്ന് മനസ്സിലാക്കാം. അതായത്, ഏതൊരു താരതമ്യ സോർട്ടിന്റെയും മോശം സമയസങ്കീർണ്ണത ചുരുങ്ങിയത് ആയിരിക്കും. ഇതും കാണുക |
Portal di Ensiklopedia Dunia