മുഹമ്മദ് ഇബ്നു മൂസാ അൽ-ഖവാരിസ്മി
ജിവിതത്തിന്റെ ഭൂരിഭാഗവും ബാഗ്ദാദിലെ അറിവിന്റെ ഭവനം (അറബി: بيت الحكمة) എന്നറിയപ്പെടുന്ന വിജ്ഞാനകേന്ദ്രത്തിൽ കഴിച്ചുകൂട്ടിയ പേർഷ്യൻ[1][2][3] ഗണിതജ്ഞനും, ജ്യോതിശാസ്ത്രജ്ഞനും, ഭൗമശാസ്ത്രജ്ഞനുമായിരുന്നു അബൂ അബ്ദുള്ള മുഹമ്മദ് ഇബ്നു മൂസാ അൽ-ഖവാരിസ്മി [4] (ക്രി.വ 780 - 850). ഇപ്പോൾ ഉസ്ബെക്കിസ്ഥാന്റെ ഭാഗമായ ഖവാരിസം എന്ന സ്ഥലത്താണ് അദ്ദേഹം ജനിച്ചത്[2][5][6]. അദ്ദേഹത്തിന്റെ അൽ കിതാബ് അൽ-മുഖ്തസർ ഫീ ഹിസാബ് അൽ ജബ്ർ വൽ മുഖാബല എന്ന ഗ്രന്ഥമായിരുന്നു (അറബി: الكتاب المختصر في حساب الجبر والمقابلة, ഇംഗ്ലീഷ്: The Compendious Book on Calculation by Completion and Balancing) ആദ്യമായി രേഖിയ, ദ്വിമാന സമവാക്യങ്ങളെ കണിശമായ രീതിയിൽ പ്രതിപാദിച്ച ആദ്യത്തെ ഗ്രന്ഥം. കൂടാതെ ഡയോഫാന്റസിനെയും ഇദ്ദേഹത്തേയും ആൾജിബ്രയുടെ (ബീജഗണിതത്തിന്റെ) പിതാക്കളായി[7] പരിഗണിക്കുന്നു. പന്ത്രണ്ടാം നൂറ്റാണ്ടിൽ ഇദ്ദേഹത്തിന്റെ കൃതിയുടെ വിവർത്തനം ഇന്ത്യൻ സംഖ്യാ സമ്പ്രദായത്തിൽ ദശാംശം ചേർത്ത സംഖ്യകളെ പശ്ചാത്യ ലോകത്തിന് പരിചയപ്പെടുത്തി.[6] ടോളമിയുടെ ഭൗശാസ്ത്രത്തിൽ ഇദ്ദേഹം പുതിയവ ഉൾപ്പെടുത്തുകയും ജ്യോതിശാസ്ത്രത്തിൽ ഗ്രന്ഥങ്ങൾ രചിക്കുകയും ചെയ്തു. ഇദ്ദേഹത്തിന്റെ സംഭാവനകൾ ഗണിതശാസ്ത്രത്തിൽ മാത്രമല്ല വലിയ മാറ്റങ്ങൾ സൃഷ്ടിച്ചത് കൂടാതെ ഭാഷയേയും സ്വാധീനിച്ചു. ആൾജിബ്ര എന്ന വാക്കിന്റെ ഉൽഭവം, ആ വാക്ക് ഇദ്ദേഹത്തിന്റെ ഗ്രന്ഥത്തിൽ ദ്വിമാനസമവാക്യങ്ങളെ നിർദ്ധാരണം ചെയ്യുന്നതിന് വിവരിച്ച രണ്ട് വഴികളിലൊന്നായിരുന്നിനെ സൂചിപ്പിച്ചിരുന്ന അൽ ജബ്ർ എന്ന വാക്കിൽനിന്നാണ്. ലത്തീൻവൽക്കരിക്കപ്പെട്ട ഇദ്ദേഹത്തിന്റെ നാമമായ അൽഗോരിത്മി (Algoritmi) എന്ന വാക്കിൽ നിന്നാണ് അൽഗോരിസം (algorism), അൽഗോരിതം (algorithm) എന്നീ പദങ്ങളുടെ ഉൽഭവം.[8] അക്കത്തെ സൂചിപ്പിക്കുവാൻ സ്പാനിഷ് ഭാഷയിൽ ഉപയോഗിക്കുന്ന ഗ്വാരിസ്മോ (guarismo)[9] പോർച്ചുഗീസ് ഭാഷയുലുപയോഗിക്കുന്ന അൽഗോരിസ്മോ (algarismo) എന്നിവയും ഇദ്ദേഹത്തിന്റെ പേരിൽ നിന്നും ഉരുത്തിരിഞ്ഞ് വന്നതാണ് ജീവിതരേഖഅൽ-ഖവാരിസ്മിയുടെ ജീവിത പശ്ചാത്തലത്തെ സംബന്ധിച്ച് കുറച്ച് വിവരങ്ങളേ ലഭ്യമായുള്ളൂ. പേര് സൂചിപ്പിക്കുന്നത് പ്രകാരം ഇദ്ദേഹം ജനിച്ചത് ഖവാറസമിൽ ആയിരിക്കാം എന്നതാണ്. പിന്നീട് മഹാ ഖൊറാസൻ സാമ്രാജ്യത്തിന്റെ ഭാഗമായ ഈ പ്രദേശം അക്കാലത്ത് പേർഷ്യൻ സാമ്രാജ്യത്തിന്റെ കീഴിലായിരുന്നു. നിലവിൽ ഉസ്ബാക്കിസ്ഥാനിലെ ഖൊറാസം എന്ന പ്രവിശ്യയാണ് ഈ ഭൂവിഭാഗം."പേർഷ്യൻ വംശത്തിൽപ്പെട്ടവരാണ് ഖവാറസമിലെ ജനങ്ങൾ" എന്ന അബൂ റൈഹാൻ അൽ-ബിറൂണി പ്രതേകം എടുത്തു പറഞ്ഞിരിക്കുന്നു.[10] ഇബ്നു നദീമിന്റെ കിത്താബ് അൽ-ഫിഹ്രിസ്ത് എന്ന ഗ്രന്ഥത്തിൽ അൽ-ഖവാരിസ്മിയുടെ ഒരു ചെറിയ ജീവചരിത്രത്തെക്കുറിച്ചും അദ്ദേഹം രചിച്ച കൃതികളെകുറിച്ചുമുള്ള വിവരണങ്ങൾ കാണാൻ കഴിയും. 813 - 833 കാലഘട്ടത്തിലാണ് അൽ-ഖവാരിസ്മി അദ്ദേഹത്തിന്റെ സൃഷ്ടികളിൽ ഭൂരിഭാഗവും നിവ്വഹിച്ചിരിക്കുന്നത്. പേർഷ്യയുടെ മേലുള്ള ഇസ്ലാമിന്റെ വിജയത്തോടുകൂടി ബാഗ്ദാദ് ശാസ്ത്ര പഠനങ്ങളുടേയും വ്യാപാരങ്ങളുടേയും കേന്ദ്രമായിത്തീരുകയുണ്ടായി. ചൈനയിൽ നിന്നും ഇന്ത്യയിൽ നിന്നുമുള്ള ശാസ്ത്ര പ്രതിഭകളും വ്യാപാരികളും ഈ നഗരത്തിലേക്ക് ആകർഷിക്കപ്പെട്ടു. ഇതേ പ്രകാരം അൽ-ഖവാരിസ്മിയും ബാഗ്ദാദിലേക്ക് വരുകയാണുണ്ടായത്. ബാഗ്ദാദിൽ അദ്ദേഹം ഖലീഫ അൽ-മഅ്മൂൻ സ്ഥാപിച്ച വിജ്ഞാനത്തിന്റെ ഭവനത്തിൽ ( House of Wisdom) ഒരു വിജ്ഞാനന്വേഷകനായി കഴിയുകയും, അവിടെ ശസ്ത്രവും ഗണിതവും അഭ്യസിക്കുകയും ചെയ്തു. ഗ്രീക്കിലും സംസ്കൃതത്തിലുമുള്ള ശാസ്ത്ര കൈയെഴുത്തുപ്രതികളും അദ്ദേഹം അഭ്യസിച്ചവയിൽ ഉൾപ്പെടുന്നു. സംഭാവനകൾഗണിതശാസ്ത്രം, ജ്യോതിശാസ്ത്രം, ഭൂമിശാസ്ത്രം, കാർട്ടോഗ്രാഫി (cartography) എന്നിവയിലുള്ള അദ്ദേഹത്തിന്റെ സംഭാവനകൾ ആ ശാസ്ത്ര മേഖലകൾക്ക് അടിത്തറപാകുന്നതിൽ സഹായിച്ചിട്ടുണ്ട്. ആൾജിബ്രയിലും ത്രികോണമിതിയിലും വലിയ മാറ്റങ്ങൾക്ക് തന്നെ അദ്ദേഹത്തിന്റെ സംഭാവനകൾ കാരണമായി. രേഖീയ ദ്വിമാന സമവാക്യങ്ങൾ ലഘൂകരിക്കുന്നതിലെ ശാസ്ത്രീയവും പ്രമാണികവുമായ അദ്ദേഹത്തിന്റെ രീതികൾ ആൾജിബ്രയുടെ തന്ത്രണങ്ങൾക്ക് വ്യക്തമായ രൂപം നൽകുകയും ചെയ്തു. ആൾജിബ്ര എന്ന വാക്കുതന്നെ അദ്ദേഹം 830 ൽ അറബിയിൽ രചിച്ച അൽ-കിത്താബ് അൽ-മുഖ്തസർ അൽ-ജബ്ർ വൽ-മുഖാബല എന്ന ഗ്രന്ഥത്തിൽ പരമാർശിക്കപ്പെട്ട പദത്തിൽനിന്നും പരിണമുച്ചുണ്ടായതാണ്. ഈ ഗ്രന്ഥം പന്ത്രണ്ടാം നൂറ്റാണ്ടിലാണ് ആദ്യമായി ലത്തീനിലേക്ക് വിവർത്തനം ചെയ്യപ്പെട്ടത്. ഏകദേശം 825 ൽ രചിക്കപ്പെട്ട ഇന്ത്യൻ സംഖ്യകൾ ഉപയോഗിച്ചുള്ള ഗണനത്തിൽ (On the Calculation with Hindu Numerals) എന്ന ഗ്രന്ഥമാണ് മദ്ധ്യപൂർവേഷ്യയിലും യൂറോപ്പിലും ഇന്ത്യൻ സംഖ്യാ സമ്പ്രദായങ്ങൾ പ്രചാരത്തിലാകുന്നതിന് കാരണമായ പ്രമാണം. ഈ കൃതി പന്ത്രണ്ടാം നൂറ്റാണ്ടിൽ അൽഗോരിത്മി ദെ ന്യൂമെറൊ ഇന്തോറം (Algoritmi de numero Indorum) എന്ന പേരിൽ വിവർത്തനം ചെയ്യപ്പെട്ടു. ആ പതിപ്പിൽ രചയിതാവിന്റെ പേരായി നൽകിയിരിക്കുന്നത് ലത്തീൻ വൽക്കരിക്കപ്പെട്ട അൽഗോരൊത്മി (algoritmi) എന്ന പേരായിരുന്നു. ഇതിൽ നിന്നുമാണ് അൽഗോരിതം (algorithm) എന്ന പദം പരിണമിച്ചു വന്നത്. ആഫ്രിക്കയേയും മദ്ധ്യപൂർവേഷ്യയേയും സംബന്ധിച്ച ടോളമിയുടെ ഭൂമിശാസ്ത്രത്തിലെ വിവരങ്ങൾ അദ്ദേഹം ശാസ്ത്രീയമാക്കുകയും ഉചിതമായ മാറ്റങ്ങൾ വരുത്തുകയു ചെയ്തു. മറ്റൊരു പ്രധാനപ്പെട്ട ഗ്രന്ഥമായിരുന്നു കിത്താബ് സൂറത്ത് അൽ-അർള് (ഭൂമിശാസ്ത്രം (Geography) എന്ന പേരിൽ വിവർത്തനം ചെയ്യപ്പെട്ട "ഭൂമിയുടെ രൂപം" എന്ന ഗ്രന്ഥം), ഈ ഗ്രന്ഥത്തിൽ അറിയപ്പെടുന്ന ഭൂമിയിലെ പ്രദേശങ്ങളെ അടിസ്ഥാനമാക്കിയുള്ള കോർഡിനേറ്റ്സ് അവതരിപ്പിച്ചിരുന്നു. ടോളമിയുടെ ഭൂമിശാസ്ത്രത്തിൽ പ്രതിപാദിച്ചിരിക്കുന്ന സ്ഥലങ്ങളെ കുറിച്ചുള്ളതായിരുന്നു അവയെങ്കിലും മെഡിറ്ററേനിയൻ കടലിന്റെ നീളവും ഏഷ്യയിലേയും ആഫ്രിക്കയിലേയും നഗരങ്ങളുടെ സ്ഥാനവും അതിൽ മെച്ചപ്പെട്ട രീതിയിൽ രേഖപ്പെടുത്തിയിരുന്നു. ഖലീഫ അൽ-മഅ്മൂനിനു വേണ്ടി ഭൂമിയുടെ ചുറ്റളവ് കണ്ടെത്തുന്നതിനായി ലോക ഭൂപടം നിർമ്മിക്കുന്നതിലും അദ്ദേഹം പ്രവർത്തിച്ചിരുന്നു. ആ സംരഭത്തിൽ പ്രവർത്തിച്ച എഴുപത് ഭൂമിശാസ്ത്രജ്ഞരുടെ പ്രവർത്തനങ്ങൾക്ക് ഇദ്ദേഹമായിരുന്നു മേൽനോട്ടം വഹിച്ചത്. അന്നറിയപ്പെടുന്ന ലോകത്തിന്റെ ഭൂപടമായിരുന്നു അതുവഴി അവർ തയ്യാറാക്കിയത്.[11] ലത്തീൻ വിവർത്തനങ്ങളിലൂടെ യൂറോപ്പിലെത്തിച്ചേർന്ന അദ്ദേഹത്തിന്റെ കൃതികൾ അവിടുത്തെ അടിസ്ഥാന ഗണിതത്തിന്റെ വികസനത്തിൽ ഗണ്യമായ സ്വധീനം ചെലുത്തിയിരുന്നു. സൗരഘടികാരം (sundial), ആസ്ട്രോലാബ് (astrolabe) പോലെയുള്ള യന്ത്രിക ഉപകരണങ്ങളെകുറിച്ചു അദ്ദേഹം എഴുതിയിരുന്നു.[12] ആൾജിബ്ര![]() അദ്ദേഹം ഏതാണ്ട് ക്രിസ്താബ്ദം 830 നോടടുത്ത കാലത്ത് രചിച്ചതാണ് അൽ-കിത്താബ് അൽ-മുഖ്തസ്വർ ഫീ ഹിസാബ് അൽ-ജബ്ർ വൽ-മുഖാബല (അറബി: الكتاب المختصر في حساب الجبر والمقابلة) (ഇംഗ്ലീഷ്: The Compendious Book on Calculation by Completion and Balancing) എന്ന ഗണിതശാസ്ത്ര ഗ്രന്ഥം. ഗണിത ക്രിയകളെ കുറിച്ചുള്ള ഇതിന്റെ രചനയക്ക് ഖലീഫ അൽ-മഅ്മൂനിൽ നിന്നുള്ള പ്രോൽസാഹനങ്ങളുണ്ടായിരുന്നു. വ്യാപാരം, ഭൂമിയുടെ അളന്നുതിട്ടപ്പെടുത്തലുകൾ, നിയമപരമായ അനന്തരവകാശം എന്നിവയിലെല്ലാം ഉദാഹരണങ്ങൾ അതിൽ ഉൾക്കൊള്ളിക്കപ്പെട്ടിരിക്കുന്നു.[13] ഈ ഗ്രന്ഥത്തിൽ സമവാക്യങ്ങൾ നിർദ്ധാരണം ചെയ്യുന്നതിനായി ഉപയോഗിക്കപ്പെട്ട ക്രിയകളിലൊന്നായ അൽ-ജബ്ർ എന്നതിൽ നിന്നാണ് ആൾജിബ്ര എന്ന വാക്കിന്റെ ഉത്ഭവം. 1145 ൽ റോബെർട്ട് ഷെസ്റ്റെർ ഈ ഗ്രന്ഥത്തെ ലത്തീനിലേക്ക് Liber algebrae et almucabala എന്ന പേരിൽ വിവർത്തനം ചെയ്തു. അതുവഴി ആൽജിബ്ര എന്ന പദവും ഉരുത്തിരിഞ്ഞു. ക്രിമോണയിലെ ജെറാർഡും ഈ കൃതിയെ വിവർത്ത ചെയ്യുകയുണ്ടായി. ഇതിന്റെ ഒരേയൊരു അറബി പതിപ്പ് ഓക്സ്ഫോർഡ് സവ്വകലാശാലയിൽ സൂക്ഷിക്കപ്പെട്ടിരുന്നു. 1831 ൽ എഫ്. റൊസെൺ അത് വിവർത്തനം ചെയ്തിരുന്നു. ഇതിന്റെ ഒരു ലത്തീൻ പതിപ്പ് കാംബ്രിഡ്ജ് സർവ്വകലാശാലയിൽ സൂക്ഷിക്കപ്പെട്ടിട്ടുമുണ്ട്.[14] ആധുനിക ആൾജിബ്രയുടെ അടിത്തറ പാകിയത് അൽ-ജബ്ർ ആണെന്ന് കരുതപ്പെടുന്നു. കൃത്യങ്കം രണ്ട് വരെയുള്ള ബഹുപദങ്ങളെ നിർദ്ധാരണം ചെയ്യുന്നതിനെ അതിൽ നന്നായി വിവരിക്കപ്പെട്ടിരിക്കുന്നു.[15] സമവാക്യങ്ങളുടെ "ലഘൂകരണം", സമവാക്യങ്ങളിൽ സമ ചിഹ്നത്തിന്റെ രണ്ട് വശത്തുനിന്നും സമാനപദങ്ങളെ ഒഴിവാക്കിയുള്ള "സന്തുലനം" എന്നീ ക്രിയകൾ ആദ്യമായി അവതരിപ്പിക്കുകയും ചെയ്തു.[16] രേഖീയ ദ്വിമാനസമവാക്യങ്ങളെ നിർദ്ധരണം ചെയ്യുന്ന അൽ-ഖവാരിസ്മിയുടെ വിവരണങ്ങൾ ആദ്യമായി സമവാക്യത്തെ ആറ് ആദർശരൂപങ്ങളിൽ ഏതെങ്കിലും ഒരു രൂപത്തിലേക്ക് ലഘൂകരിച്ചെത്തിക്കുകയാണ് ചെയ്യുന്നത്, ആ ആറ് ആദർശരൂപങ്ങൾ ഇവയാണ്:
ഇതിനായി അൽ-ജബ്ർ (അറബി: الجبر), അൽ-മുഖാബല (അറബി: المقابلة) എന്നീ രണ്ട് രീതിയിലുള്ള ക്രിയകൾ നടത്തുന്നു, സമവാക്യത്തിലെ വർഗ്ഗങ്ങൾ, വർഗ്ഗമൂലങ്ങൾ എന്നിവയെ നീക്കം ചെയ്യുന്നതിനായി സമവാക്യത്തിന്റെ രണ്ട് വശങ്ങളിലും ഒരേ വിലകൾ ചേർക്കുകയാണ് അൽ-ജബ്റിൽ ചെയ്യുന്നത്. ഉദാഹരണത്തിന് x2 = 40x − 4x2 എന്നതിനെ 5x2 = 40x എന്ന രൂപത്തിലേക്ക് ലഘൂകരിക്കുന്നു. ഒരേ മാനമുള്ള പദങ്ങളെ സമവാക്യത്തിന്റെ ഒരു വശത്തേക്ക് കൊണ്ടുവരികയാണ് അൽ-മുഖാബലയിൽ ചെയ്യുന്നത്. ഉദാഹരണത്തിന് x2 + 14 = x + 5 എന്നതിനെ x2 + 9 = x എന്ന രൂപത്തിലെത്തിക്കുന്നു. മുകളിൽ നൽകിയിരിക്കുന്ന വിവരണങ്ങളിൽ ആധുനിക കാലത്തെ ഗണിത സൂചകങ്ങളാണ് ഉപയോഗിച്ചിരിക്കുന്നത്, പക്ഷെ അൽ-ഖവാരിസ്മിയുടെ കാലത്തെ ഈ രീതിയിൽ ഗണിത വാക്യങ്ങൾ സൂചിപ്പിക്കുന്നതിനുള്ള രീതിയുടെ നല്ലൊരു ഭാഗവും വികസിച്ചിട്ടില്ലായിരുന്നു. അതിനാൽ തന്നെ അദ്ദേഹം സാധാരണ രീതിയിലുള്ള വിവരണങ്ങളാണ് ഗണിത പ്രശ്നങ്ങളെയും അവയുടെ പരിഹാരങ്ങളെയും വിവരിക്കാനുപയോഗിച്ചിരുന്നത്. ഉദാഹരണത്തിന്, ഒരു പ്രശ്നത്തെ അദ്ദേഹം വിവരിക്കുന്നത് ഇങ്ങനെയാണ് (1831 ലെ വിവർത്തനത്തിൽ നിന്ന്):
സമവാക്യത്തിന്റെ വർഗ്ഗമൂലങ്ങൾ 'p', 'q' എന്നിവയാണെങ്കിൽ. , അതായത് ഇതുവഴി ഒരു വർഗ്ഗമൂലം, എന്ന് ലഭിക്കുന്നു. കിത്താബ് അൽ-ജബ്ർ വൽ-മുഖാബല എന്ന പേരിൽ മറ്റു ചിലരും കൃതികൾ സൃഷ്ടിച്ചിട്ടുണ്ട്. അബൂ ഹനീഫ അൽ-ദീനവരി, അബൂ കമാൽ ഷുജ ഇബ്ൻ അസ്ലം, അബൂ മുഹമ്മദ് അൽ-അദ്ലി, അബൂ യൂസുഫ് അൽ-മിസ്സിസി, അബ്ദുൽ ഹമീദ് ഇബ്ൻ തുർക്ക്, സിന്ധ് ഇബ്ൻ അലി, സഹ്ൽ ഇബ്ൻ ബിസ്റ്, സറഫദ്ദീൻ അൽ-തൂസി എന്നിവർ ഇതിൽപെടുന്നു.
അങ്കഗണിതംഅദ്ദേഹത്തിന്റെ രണ്ടാമത്തെ പ്രധാനപ്പെട്ട കൃതി അങ്കഗണിതത്തെ പ്രതിപാദിക്കുന്നതായിരുന്നു, അതിന്റെ ലാറ്റി പതിപ്പ് സംരക്ഷിക്കപ്പെട്ടുവെങ്കിലും അറബിയിലുള്ള മൂലകൃതി നഷ്ടമായിരിക്കുന്നു. 1126 ൽ ആസ്ട്രോണമിക്കൽ ടേബിളുകൾ പരിഭാഷപ്പെടുത്തിയ ബാത്തിലെ അഡെലാർഡ് തന്നെയായിരിക്കണം ഇതിന്റെയും വിവർത്തനം നടത്തിയിട്ടുണ്ടാവുക. അവലംബം
|
Portal di Ensiklopedia Dunia