മെഴ്സെൻ അഭാജ്യസംഖ്യഎന്ന രീതിയിൽ എഴുതാൻ സാധിക്കുന്ന അഭാജ്യസംഖ്യകളാണ് മെഴ്സെൻ അഭാജ്യസംഖ്യകൾ.[1] എന്ന രീതിയിൽ എഴുതാനാവുന്ന സംഖ്യകളെ പൊതുവെ മെഴ്സെൻ സംഖ്യകൾ എന്ന് വിളിക്കുന്നു. ഇവയെക്കുറിച്ച് പഠിച്ച ഫ്രഞ്ച് സന്യാസിയായിരുന്ന മാരിൻ മെഴ്സെന്റെ ബഹുമാനാർത്ഥമാണ് നാമകരണം. Mn ഒരു അഭാജ്യസംഖ്യയാകണമെങ്കിൽ n ഒരു അഭാജ്യസംഖ്യയായിരിക്കണമെന്ന് നിർബന്ധമാണ്, എന്നാൽ n അഭാജ്യമാകുന്ന അവസരത്തിലെല്ലാം Mn അഭാജ്യമാവുന്നില്ല. 3, 7, 31, 127 എന്നിവയാണ് ഏറ്റവും ചെറിയ മെഴ്സെൻ അഭാജ്യസംഖ്യകൾ. ഏറ്റവും ചെറിയ അഭാജ്യസംഖ്യകളായ 2, 3, 5, 7 എന്നിവയെ രണ്ടിന്റെ ഘാതമാക്കി ഒന്ന് കുറച്ചാൽ ഈ സംഖ്യകൾ ലഭിക്കുന്നു. എന്നാൽ അടുത്ത അഭാജ്യസംഖ്യയായ 11 ന്റെമേൽ ഇപ്രകാരം ചെയ്താൽ ലഭിക്കുന്ന സംഖ്യയായ 2047 അഭാജ്യമല്ല (211-1 = 2047 = 23 × 89). 48 മെഴ്സെൻ അഭാജ്യസംഖ്യകൾ ഇതുവരെ കണ്ടുപിടിക്കപ്പെട്ടിട്ടുണ്ട്. അറിയപ്പെടുന്നതിൽ വച്ച് ഏറ്റവും വലിയ അഭാജ്യസംഖ്യ (25,78,85,161 − 1) ഒരു മെഴ്സെൻ അഭാജ്യസംഖ്യയാണ്.[2][3] 1997-നു ശേഷം കണ്ടുപിടിച്ചിട്ടുള്ള മെഴ്സെൻ അഭാജ്യങ്ങളെയെല്ലാം ഡിസ്ട്രിബ്യൂട്ടഡ് കമ്പ്യൂട്ടിങ് പ്രൊജക്റ്റ് ആയ ഗ്രേറ്റ് ഇന്റർനെറ്റ് മെഴ്സെൻ പ്രൈം സർച്ച് ആണ് കണ്ടെത്തിയത്. മെഴ്സെൻ അഭാജ്യസംഖ്യകളുടെ എണ്ണം അനന്തമാണോ എന്നത് ഇതുവരെ നിർദ്ധാരണം ചെയ്യപ്പെടാത്ത ഒരു ഗണിതപ്രശ്നമാണ് സവിശേഷതകൾസംഖ്യകൾ അഭാജ്യമാണോ എന്ന് പരിശോധിക്കുന്ന സാമാന്യവും സുനിശ്ചിതവുമായ അൽഗൊരിതങ്ങൾ (ഉദാ : എ.കെ.എസ്. അഭാജ്യതാപരിശോധന) വളരെയധികം സമയമെടുക്കുന്നവയാണ്. എന്നാൽ മെഴ്സെൻ സംഖ്യകൾ അഭാജ്യമാണോ എന്ന് കണ്ടെത്താൻ ഇതിലും വളരെ വേഗത്തിൽ നടത്താവുന്ന ലൂകാസ്-ലെഹ്മർ അഭാജ്യതാപരിശോധന ഉപയോഗിക്കാം. അതിനാൽ വലിയ അഭാജ്യസംഖ്യകൾ കണ്ടെത്താൻ ശ്രമിക്കുന്നവർ അധികവും മെഴ്സെൻ സംഖ്യകൾ അഭാജ്യമാണോ എന്ന് തിരയാനാണ് ശ്രമിക്കാറ് മെഴ്സെൻ അഭാജ്യസംഖ്യകൾ പെർഫെക്റ്റ് നമ്പറുകളുമായി അഭേദ്യമായി ബന്ധപ്പെട്ടു കിടക്കുന്നു. 2p-1 അഭാജ്യമാണെങ്കിൽ 2p-1(2p-1) ഒരു പെർഫെക്റ്റ് നമ്പറായിരിക്കുമെന്ന് ബി.സി. നാലാം നൂറ്റാണ്ടിൽ യൂക്ലിഡ് തെളിയിച്ചതാണ്. Mp(Mp+1)/2 എന്നതിന് തുല്യമാണ് ഈ സംഖ്യ. പെർഫെക്റ്റ് ആയ ഇരട്ടസംഖ്യകളെല്ലാം ഇത്തരത്തിലുള്ളതായിരിക്കണമെന്ന് പതിനെട്ടാം നൂറ്റാണ്ടിൽ ഓയ്ലറും തെളിയിച്ചു.[4] പെർഫെക്റ്റ് ആയ ഒറ്റസംഖ്യകളുണ്ടോ എന്ന കാര്യം അറിയപ്പെട്ടിട്ടില്ല. അവലംബം
പുറത്തേക്കുള്ള കണ്ണികൾ |
Portal di Ensiklopedia Dunia