ലഗ്രാഞ്ചിന്റെ നാല് വർഗ്ഗ പ്രമേയംഏത് എണ്ണൽ സംഖ്യയെയും നാല് പൂർണ്ണവർഗ്ഗങ്ങളുടെ തുകയായി എഴുതാൻ സാധിക്കും എന്നതിനെ ലഗ്രാഞ്ചിന്റെ നാല് വർഗ്ഗ പ്രമേയം (Lagrange's four-square theorem) അഥവാ ബാഷെയുടെ കൺജെക്ചർ (Bachet's conjecture) എന്ന് വിളിക്കുന്നു. അതായത്, ഒരു എണ്ണൽ സംഖ്യയാണെങ്കിൽ എന്ന സമവാക്യമനുസരിക്കുന്ന എന്ന പൂർണ്ണസംഖ്യകളുണ്ടാകും. ഉദാഹരണമായി 3, 31, 310 എന്ന സംഖ്യകളെ നാല് പൂർണ്ണവർഗ്ഗങ്ങളുടെ തുകയായി ഇപ്രകാരമെഴുതാം: ജോസഫ് ലൂയി ലഗ്രാഞ്ച് ആണ് 1770-ൽ ഈ പ്രമേയം തെളിയിച്ചത്, അദ്ദേഹത്തിന്റെ പേരിലാണ് പ്രമേയം അറിയപ്പെടുന്നതും. ചരിത്രംഅരിത്മെറ്റിക്കയിലെ ഉദാഹരണങ്ങളിൽ നിന്ന് ഡയൊഫാന്റസിന് ഈ പ്രമേയത്തെക്കുറിച്ച് അറിവുണ്ടായിരുന്നുവെന്ന് തെളിയുന്നു. 1621-ൽ ഈ ഗ്രന്ഥം ലാറ്റിനിലേക്ക് പരിഭാഷപ്പെടുത്തിയ ബാഷെ (ക്ലോദ് ഗസ്പാർദ് ബാഷെ ദെ മെസിരിയാക്) തർജ്ജമയുടെ കുറിപ്പുകളിൽ പ്രമേയം രേഖപ്പെടുത്തി. എന്നാൽ 1770-ൽ ലഗ്രാഞ്ചാണ് ഇത് ആദ്യമായി തെളിയിച്ചത്.[1] അദ്രിയൻ-മാരി ലെഷാന്ദൃ 1797-ൽ മൂന്ന് വർഗ്ഗ പ്രമേയം കണ്ടുപ്പിടിച്ച് ലഗ്രാഞ്ചിന്റെ പ്രമേയം വികസിപ്പിച്ചു. കൃത്യം എന്ന രൂപത്തിലെഴുതാവുന്ന എണ്ണൽസംഖ്യകളെയാണ് മൂന്ന് പൂർണ്ണവർഗ്ഗങ്ങളുടെ തുകയായി എഴുതാനാവുന്നത് എന്നാണ് ഈ പ്രമേയം പറയുന്നത് (ഇവിടെ , എന്നിവ പൂർണ്ണസംഖ്യകളാണ്). ഇതിനു ശേഷം 1834-ൽ കാൾ ഗുസ്താബ് ജേക്കബ് ജക്കോബി ഒരു പൂർണ്ണസംഖ്യയെ നാല് പൂർണ്ണവർഗ്ഗങ്ങളുടെ തുകയായി എഴുതാവുന്ന രീതികളുടെ എണ്ണം തരുന്ന സൂത്രവാക്യം കണ്ടുപിടിച്ചു, ഇത് ജക്കോബിയുടെ നാല് വർഗ്ഗ പ്രമേയം എന്നറിയപ്പെടുന്നു. പരസ്പരം സ്പർശിക്കുന്ന നാല് വൃത്തങ്ങളുടെ ആരങ്ങളെ ബന്ധിപ്പിക്കുന്ന ദെക്കാർത്ത് പ്രമേയവുമായും ലഗ്രാഞ്ചിന്റെ പ്രമേയത്തിന് ബന്ധമുണ്ട്. അപ്പൊളോണിയൻ ഗാസ്കെറ്റുകളുമായും രാമാനുജൻ-പീറ്റേഴ്സൺ കൺജെക്ചറുമായും ഇത് ബന്ധപ്പെട്ടുകിടക്കുന്നു.[2] സാമാന്യവത്ക്കരണങ്ങൾലഗ്രാഞ്ചിന്റെ പ്രമേയം ഫെർമയുടെ ബഹുഭുജ സംഖ്യാ പ്രമേയത്തിന്റെയും വാറിങിന്റെ പ്രശ്നത്തിന്റെയും വിശിഷ്ടരൂപമാണ്. ഈ വിധത്തിലും പ്രമേയത്തെ സാമാന്യവത്കരിക്കാം: എന്ന എണ്ണൽ സംഖ്യകൾ തന്നിട്ടുണ്ടെന്നിരിക്കട്ടെ. ന്റെ ഏത് (പൂർണ്ണസംഖ്യാ) വിലയ്ക്കും എന്ന സമവാക്യമനുസരിക്കുന്ന എന്ന പൂർണ്ണസംഖ്യകൾ കണ്ടെത്തുക സാധ്യമാണോ? ആകുന്ന അവസരത്തിൽ ഇത് സാധിക്കും എന്ന് ലഗ്രാഞ്ചിന്റെ പ്രമേയം പറയുന്നു. സാമാന്യമായ നിർദ്ധാരണം കണ്ടെത്തിയത് രാമാനുജനാണ്.[3] എന്ന് സാമാന്യത നഷ്ടപ്പെടാതെ എടുത്താൽ ഏത് നും നിർദ്ധാരണമായി കണ്ടുപിടിക്കാനാകുന്ന 54 വിലകളുണ്ടെന്ന് രാമാനുജൻ തെളിയിച്ചു. (55 ആമത്തെ വിലയായി കൂടി രാമാനുജൻ പറഞ്ഞിരുന്നുവെങ്കിലും ഇത് തെറ്റാണ്, ആകുമ്പോൾ നിർദ്ധാരണമില്ല.[4]) അവലംബംഗ്രന്ഥസൂചി
|
Portal di Ensiklopedia Dunia