သဏ္ဌာန်ရင်း

ဤ သာဓက အဝိုင်းဝိုင်းပြပုံ ၆ခုလုံးသည် ဟူသော အစုကိုချည်း အစုပိုင်းဖြစ်နိုင်သမျှသော အစုများကို သဏ္ဌာန်ရင်း အစုအုံ စုလျာပုံ မြောက်အောင် ဝိုင်းခတ် အစုဖွဲ့ကြည့်ခြင်း ဟုတ်မဟုတ် ကြည့်ပါလေ။ အထက် ၄ခုမှာ သဏ္ဌာန်ရင်း စုအုံပုံ မြောက်၏။ ဘယ်ဘက်အောက်ဆုံး သာဓက၏ ပါဝင်စုများ ဝိုင်းလျာကြည့်ပုံတွင်၊ ပါဝင်စု နှင့် တို့၏ အရောစု ကို ပါဝင်စုအဖြစ် ဝိုင်းလျာမထား၍၊ သဏ္ဌာန်ရင်းအစုအုံ အင်္ဂါရပ် (အမှတ်စဉ်-၂) နှင့် မကိုက်ညီပေ။ ညာဘက်အောက်ဆုံး သာဓက၏ ဝိုင်းလျာပုံတွင်၊ the bottom-right example is not a topology because the intersection of ပါဝင်စု နှင့် တို့၏ ဘုံပါပိုင်း ကို ကို ပါဝင်စုအဖြစ် ဝိုင်းလျာမထား၍၊ သဏ္ဌာန်ရင်းအစုအုံ အင်္ဂါရပ် (အမှတ်စဉ်-၃) နှင့် မကိုက်ညီပေ။

သဏ္ဌာန်ရင်းဗေဒ (Topolgy) တွင် သုံးသော အစုလျာအုံ (သို့) သဏ္ဌာန်ရင်း (အင်္ဂလိပ်: topology) ဆိုသည်မှာ - သဏ္ဌာန်ရှိ ရပ်ဝန်း (Topological space) တခုခု ဖြစ်ပေါ်လာအောင် အမှတ်စု(set) တစုကို ဖွဲ့စည်းပုံအရင်းခံ သဏ္ဌာန်ရင်း သင်္ချာနည်းကျ ဖော်ဆောင်ပေးသူ အစုအုံ (familiy of sets) အဖြစ်၊ အောက်ပါ အင်္ဂါရပ် (axiom) တို့နှင့် ပြည့်စုံရ၏။

X က ၎င်း အမှတ်စု၊ ၎င်းကို ဖော်ဆောင်သူ သဏ္ဌာန်ရင်း အစုအုံ τ ၌ ပါဝင်သည့် အစုများမှာ ဤသို့ စုံလင်ရမည်။

  1. ဗလာစုရော၊ X (တခုလုံးကိုယ်တိုင်)ကပါ အစုအုံ τ ထဲ ပါဝင်သည့် အစုများ ဖြစ်နေ။
  2. τ ထဲရှိ မည်သည့်ပါဝင်စု မဆို တို့၏ အရောစု(union) အဖြစ် ဖြစ်ပေါ်နိုင်သည့် အစုတိုင်းသည်လည်း ဤအစုအုံကြီး τ ထဲ၌ တခုအပါအဝင် ဖြစ်နှင့်ပြီး။
  3. τထဲမှ (သင်္ချာရေတွက်နိုင်စွမ်းထက် ကျော်လွန်အောင်မူ မများလွန်းသော) ပါဝင်စုတို့၏ ဘုံပါပိုင်း(intersection) ဖြစ်နိုင်သမျှ (ဗလာစု အပါဝင်) အစုတိုင်းသည်လည်း ဤအစုအုံကြီး τ ထဲ၌ တခုအပါအဝင် ဖြစ်နှင့်ပြီး။

အကိုးအကား

Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia

Kembali kehalaman sebelumnya