အကူအညီ:Displaying a formula ဤအကူအညီ စာမျက်နှာကို မြန်မာဘာသာသို့
ပြန်ဆိုရန် လိုအပ်နေသေးသည်။
မြန်မာဘာသာသို့ ပြန်ဆိုခြင်းနှင့် စပ်လျဉ်း၍
လက်ရှိစာမျက်နှာကို ဂူဂယ်ဘာသာပြန် (Google Translate) သုံး၍ မြန်မာဘာသာသို့ ပြန်ဆို ကြည့်နိုင်သည်။ သို့သော် ၎င်းဘာသာပြန်များကို အတည်မယူပါနှင့်၊ အမှားများစွာ ပါလေ့ရှိသောကြောင့်ဖြစ်သည်။ သေချာစိစစ်၍ ကြိုးစားပြုပြင်ပြီးမှ ဘာသာပြန်ရေးသားရန် ဖြစ်သည်။ ဘာသာပြန်ပြီးပါက ဤ {{Translation incomplete}} တမ်းပလိတ်ကို ဤစာမျက်နှာမှ ဖျက်ပစ်ရန် မမေ့ပါနှင့်။
TeX vs HTML
အကျယ်တဝင့် ဖော်ပြထားသောစာမျက်နှာ -
Wikipedia:Rendering math
TeX ဖြင့် အထူးစာလုံးများဖော်ပြခြင်းကို အသုံးမပြုမီ အောက်တွင်ပြသထားသည့် ဇယားကဲ့သို့ HTML ကို Template:Math နှင့်တွဲဖက်အသုံးပြုကာ ဆင်တူရလဒ်များ ဖန်တီးနိုင်သည်။ Help:Special characters တွင်လည်း ကြည့်ပါ။
TeX syntax
TeX ဖော်ပြချက်
HTML syntax
HTML ဖော်ပြချက်
\alpha
α
{\displaystyle \alpha }
{{math|< VAR > α </ VAR > }}
α
f(x) = x^ 2
f
(
x
)
=
x
2
{\displaystyle f(x)=x^{2}}
{{math|''f''(< var > x</ var > ) {{=}} < var > x</ var >< sup > 2</ sup > }}
f (x ) = x 2
\sqrt { 2}
2
{\displaystyle {\sqrt {2}}}
{{math|{{radical|2}}}}
√2
\sqrt { 1-e^ 2}
1
−
e
2
{\displaystyle {\sqrt {1-e^{2}}}\!}
{{math|{{radical|1 − ''e''< sup > 2</ sup > }}}}
√1 − e 2
ဘယ်ဖက်ရှိ ကုဒ်များအသုံးပြု၍ ညာဖက်ရှိ သင်္ကေတများကို ဖန်တီးနိုင်သည်။ သို့သော် နောက်ပိုင်းတွင် ‘=’ မှလွဲ၍ ကျန်သင်္ကေတများကို ဝီကီစာသားများအတွင်း တိုက်ရိုက်ထည့်သွင်း အသုံးပြုနိုင်သည်။
HTML syntax
ဖော်ပြချက်
α β γ δ ε ζ
η θ ι κ λ μ ν
ξ ο π ρ σ ς
τ υ φ χ ψ ω
α β γ δ ε ζ
η θ ι κ λ μ ν
ξ ο π ρ σ ς
τ υ φ χ ψ ω
Γ Δ Θ Λ Ξ Π
Σ Φ Ψ Ω
Γ Δ Θ Λ Ξ Π
Σ Φ Ψ Ω
∫ ∑ ∏ √ − ± ∞
≈ ∝ = ≡ ≠ ≤ ≥
× · ⋅ ÷ ∂ ′ ″
∇ ‰ ° ∴ ∅
∫ ∑ ∏ √ − ± ∞
≈ ∝ = ≡ ≠ ≤ ≥
× · ⋅ ÷ ∂ ′ ″
∇ ‰ ° ∴ ∅
∈ ∉ ∩ ∪ ⊂ ⊃ ⊆ ⊇
¬ ∧ ∨ ∃ ∀
⇒ ⇔ → ↔ ↑ ↓
ℵ - – —
∈ ∉ ∩ ∪ ⊂ ⊃ ⊆ ⊇
¬ ∧ ∨ ∃ ∀
⇒ ⇔ → ↔ ↑ ↓
ℵ - – —
ဝီကီပရောဂျက်တွင် HTML နှင့် TeX တို့သည် သူ့နေရာနှင့်သူ အကျိုးရှိခြင်းကြောင့် ထိုနှစ်မျိုးစလုံးကို အသုံးပြုသည်။
TeX အသုံးပြ၍ ပုံစံချခြင်း
ဖန်ရှင်များ၊ သင်္ကတများနှင့် အထူးစာလုံးများ
သံပြောင်းပြသင်္ကတများ/diacritics
\dot { a} , \ddot { a} , \acute { a} , \grave { a}
a
˙
,
a
¨
,
a
´
,
a
`
{\displaystyle {\dot {a}},{\ddot {a}},{\acute {a}},{\grave {a}}\!}
\check { a} , \breve { a} , \tilde { a} , \bar { a}
a
ˇ
,
a
˘
,
a
~
,
a
¯
{\displaystyle {\check {a}},{\breve {a}},{\tilde {a}},{\bar {a}}\!}
\hat { a} , \widehat { a} , \vec { a}
a
^
,
a
^
,
a
→
{\displaystyle {\hat {a}},{\widehat {a}},{\vec {a}}\!}
Standard numerical functions
\exp _ a b = a^ b, \exp b = e^ b, 10^ m
exp
a
b
=
a
b
,
exp
b
=
e
b
,
10
m
{\displaystyle \exp _{a}b=a^{b},\exp b=e^{b},10^{m}\!}
\ln c, \lg d = \log e, \log _{ 10} f
ln
c
,
lg
d
=
log
e
,
log
10
f
{\displaystyle \ln c,\lg d=\log e,\log _{10}f\!}
\sin a, \cos b, \tan c, \cot d, \sec e, \csc f
sin
a
,
cos
b
,
tan
c
,
cot
d
,
sec
e
,
csc
f
{\displaystyle \sin a,\cos b,\tan c,\cot d,\sec e,\csc f\!}
\arcsin h, \arccos i, \arctan j
arcsin
h
,
arccos
i
,
arctan
j
{\displaystyle \arcsin h,\arccos i,\arctan j\!}
\sinh k, \cosh l, \tanh m, \coth n
sinh
k
,
cosh
l
,
tanh
m
,
coth
n
{\displaystyle \sinh k,\cosh l,\tanh m,\coth n\!}
\operatorname { sh} \, k, \operatorname { ch} \, l, \operatorname { th} \, m, \operatorname { coth} \, n
sh
k
,
ch
l
,
th
m
,
coth
n
{\displaystyle \operatorname {sh} \,k,\operatorname {ch} \,l,\operatorname {th} \,m,\operatorname {coth} \,n\!}
\operatorname { argsh} \, o, \operatorname { argch} \, p, \operatorname { argth} \, q
argsh
o
,
argch
p
,
argth
q
{\displaystyle \operatorname {argsh} \,o,\operatorname {argch} \,p,\operatorname {argth} \,q\!}
\sgn r, \left\vert s \right\vert
sgn
r
,
|
s
|
{\displaystyle \operatorname {sgn} r,\left\vert s\right\vert \!}
\min (x,y), \max (x,y)
min
(
x
,
y
)
,
max
(
x
,
y
)
{\displaystyle \min(x,y),\max(x,y)\!}
Bounds
\min x, \max y, \inf s, \sup t
min
x
,
max
y
,
inf
s
,
sup
t
{\displaystyle \min x,\max y,\inf s,\sup t\!}
\lim u, \liminf v, \limsup w
lim
u
,
lim inf
v
,
lim sup
w
{\displaystyle \lim u,\liminf v,\limsup w\!}
\dim p, \deg q, \det m, \ker\phi
dim
p
,
deg
q
,
det
m
,
ker
ϕ
{\displaystyle \dim p,\deg q,\det m,\ker \phi \!}
Projections
\Pr j, \hom l, \lVert z \rVert , \arg z
Pr
j
,
hom
l
,
‖
z
‖
,
arg
z
{\displaystyle \Pr j,\hom l,\lVert z\rVert ,\arg z\!}
Differentials နှင့် derivatives
dt, \operatorname { d} \! t, \partial t, \nabla\psi
d
t
,
d
t
,
∂
t
,
∇
ψ
{\displaystyle dt,\operatorname {d} \!t,\partial t,\nabla \psi \!}
dy/dx, \operatorname { d} \! y/\operatorname { d} \! x, { dy \over dx} , { \operatorname { d} \! y\over\operatorname { d} \! x} , { \partial ^ 2\over\partial x_ 1\partial x_ 2} y
d
y
/
d
x
,
d
y
/
d
x
,
d
y
d
x
,
d
y
d
x
,
∂
2
∂
x
1
∂
x
2
y
{\displaystyle dy/dx,\operatorname {d} \!y/\operatorname {d} \!x,{dy \over dx},{\operatorname {d} \!y \over \operatorname {d} \!x},{\partial ^{2} \over \partial x_{1}\partial x_{2}}y\!}
\prime , \backprime , f^ \prime , f', f'', f^{ (3)} , \dot y, \ddot y
′
,
‵
,
f
′
,
f
′
,
f
″
,
f
(
3
)
,
y
˙
,
y
¨
{\displaystyle \prime ,\backprime ,f^{\prime },f',f'',f^{(3)}\!,{\dot {y}},{\ddot {y}}}
Letter-like symbols or constants
\infty , \aleph , \complement , \backepsilon , \eth , \Finv , \hbar
∞
,
ℵ
,
∁
,
∍
,
ð
,
Ⅎ
,
ℏ
{\displaystyle \infty ,\aleph ,\complement ,\backepsilon ,\eth ,\Finv ,\hbar \!}
\Im , \imath , \jmath , \Bbbk , \ell , \mho , \wp , \Re , \circledS
ℑ
,
ı
,
ȷ
,
k
,
ℓ
,
℧
,
℘
,
ℜ
,
Ⓢ
{\displaystyle \Im ,\imath ,\jmath ,\Bbbk ,\ell ,\mho ,\wp ,\Re ,\circledS \!}
Modular arithmetic
s_ k \equiv 0 \pmod { m}
s
k
≡
0
(
mod
m
)
{\displaystyle s_{k}\equiv 0{\pmod {m}}\!}
a\,\bmod\, b
a
mod
b
{\displaystyle a\,{\bmod {\,}}b\!}
\gcd (m, n), \operatorname { lcm} (m, n)
gcd
(
m
,
n
)
,
lcm
(
m
,
n
)
{\displaystyle \gcd(m,n),\operatorname {lcm} (m,n)}
\mid , \nmid , \shortmid , \nshortmid
∣
,
∤
,
∣
,
∤
{\displaystyle \mid ,\nmid ,\shortmid ,\nshortmid \!}
Radicals
\surd , \sqrt { 2} , \sqrt [n] {} , \sqrt [3] { x^ 3+y^ 3 \over 2}
√
,
2
,
n
,
x
3
+
y
3
2
3
{\displaystyle \surd ,{\sqrt {2}},{\sqrt[{n}]{}},{\sqrt[{3}]{x^{3}+y^{3} \over 2}}\!}
Operators
+, -, \pm , \mp , \dotplus
+
,
−
,
±
,
∓
,
∔
{\displaystyle +,-,\pm ,\mp ,\dotplus \!}
\times , \div , \divideontimes , /, \backslash
×
,
÷
,
⋇
,
/
,
∖
{\displaystyle \times ,\div ,\divideontimes ,/,\backslash \!}
\cdot , * \ast , \star , \circ , \bullet
⋅
,
∗
∗
,
⋆
,
∘
,
∙
{\displaystyle \cdot ,*\ast ,\star ,\circ ,\bullet \!}
\boxplus , \boxminus , \boxtimes , \boxdot
⊞
,
⊟
,
⊠
,
⊡
{\displaystyle \boxplus ,\boxminus ,\boxtimes ,\boxdot \!}
\oplus , \ominus , \otimes , \oslash , \odot
⊕
,
⊖
,
⊗
,
⊘
,
⊙
{\displaystyle \oplus ,\ominus ,\otimes ,\oslash ,\odot \!}
\circleddash , \circledcirc , \circledast
⊝
,
⊚
,
⊛
{\displaystyle \circleddash ,\circledcirc ,\circledast \!}
\bigoplus , \bigotimes , \bigodot
⨁
,
⨂
,
⨀
{\displaystyle \bigoplus ,\bigotimes ,\bigodot \!}
Sets
\{ \} , \O \empty \emptyset , \varnothing
{
}
,
∅
∅
∅
,
∅
{\displaystyle \{\},\emptyset \emptyset \emptyset ,\varnothing \!}
\in , \notin \not\in , \ni , \not\ni
∈
,
∉∉
,
∋
,
∌
{\displaystyle \in ,\notin \not \in ,\ni ,\not \ni \!}
\cap , \Cap , \sqcap , \bigcap
∩
,
⋒
,
⊓
,
⋂
{\displaystyle \cap ,\Cap ,\sqcap ,\bigcap \!}
\cup , \Cup , \sqcup , \bigcup , \bigsqcup , \uplus , \biguplus
∪
,
⋓
,
⊔
,
⋃
,
⨆
,
⊎
,
⨄
{\displaystyle \cup ,\Cup ,\sqcup ,\bigcup ,\bigsqcup ,\uplus ,\biguplus \!}
\setminus , \smallsetminus , \times
∖
,
∖
,
×
{\displaystyle \setminus ,\smallsetminus ,\times \!}
\subset , \Subset , \sqsubset
⊂
,
⋐
,
⊏
{\displaystyle \subset ,\Subset ,\sqsubset \!}
\supset , \Supset , \sqsupset
⊃
,
⋑
,
⊐
{\displaystyle \supset ,\Supset ,\sqsupset \!}
\subseteq , \nsubseteq , \subsetneq , \varsubsetneq , \sqsubseteq
⊆
,
⊈
,
⊊
,
⊊
,
⊑
{\displaystyle \subseteq ,\nsubseteq ,\subsetneq ,\varsubsetneq ,\sqsubseteq \!}
\supseteq , \nsupseteq , \supsetneq , \varsupsetneq , \sqsupseteq
⊇
,
⊉
,
⊋
,
⊋
,
⊒
{\displaystyle \supseteq ,\nsupseteq ,\supsetneq ,\varsupsetneq ,\sqsupseteq \!}
\subseteqq , \nsubseteqq , \subsetneqq , \varsubsetneqq
⫅
,
⊈
,
⫋
,
⫋
{\displaystyle \subseteqq ,\nsubseteqq ,\subsetneqq ,\varsubsetneqq \!}
\supseteqq , \nsupseteqq , \supsetneqq , \varsupsetneqq
⫆
,
⊉
,
⫌
,
⫌
{\displaystyle \supseteqq ,\nsupseteqq ,\supsetneqq ,\varsupsetneqq \!}
Relations
=, \ne , \neq , \equiv , \not\equiv
=
,
≠
,
≠
,
≡
,
≢
{\displaystyle =,\neq ,\neq ,\equiv ,\not \equiv \!}
\doteq , \doteqdot ,
\overset { \underset { \mathrm { def}}{}}{ =} ,
:=
≐
,
≑
,
=
d
e
f
,
:=
{\displaystyle \doteq ,\doteqdot ,{\overset {\underset {\mathrm {def} }{}}{=}},:=\!}
\sim , \nsim , \backsim , \thicksim , \simeq , \backsimeq , \eqsim , \cong , \ncong
∼
,
≁
,
∽
,
∼
,
≃
,
⋍
,
≂
,
≅
,
≆
{\displaystyle \sim ,\nsim ,\backsim ,\thicksim ,\simeq ,\backsimeq ,\eqsim ,\cong ,\ncong \!}
\approx , \thickapprox , \approxeq , \asymp , \propto , \varpropto
≈
,
≈
,
≊
,
≍
,
∝
,
∝
{\displaystyle \approx ,\thickapprox ,\approxeq ,\asymp ,\propto ,\varpropto \!}
<, \nless , \ll , \not\ll , \lll , \not\lll , \lessdot
<
,
≮
,
≪
,
≪̸
,
⋘
,
⋘̸
,
⋖
{\displaystyle <,\nless ,\ll ,\not \ll ,\lll ,\not \lll ,\lessdot \!}
>, \ngtr , \gg , \not\gg , \ggg , \not\ggg , \gtrdot
>
,
≯
,
≫
,
≫̸
,
⋙
,
⋙̸
,
⋗
{\displaystyle >,\ngtr ,\gg ,\not \gg ,\ggg ,\not \ggg ,\gtrdot \!}
\le , \leq , \lneq , \leqq , \nleq , \nleqq , \lneqq , \lvertneqq
≤
,
≤
,
⪇
,
≦
,
≰
,
≰
,
≨
,
≨
{\displaystyle \leq ,\leq ,\lneq ,\leqq ,\nleq ,\nleqq ,\lneqq ,\lvertneqq \!}
\ge , \geq , \gneq , \geqq , \ngeq , \ngeqq , \gneqq , \gvertneqq
≥
,
≥
,
⪈
,
≧
,
≱
,
≱
,
≩
,
≩
{\displaystyle \geq ,\geq ,\gneq ,\geqq ,\ngeq ,\ngeqq ,\gneqq ,\gvertneqq \!}
\lessgtr , \lesseqgtr , \lesseqqgtr , \gtrless , \gtreqless , \gtreqqless
≶
,
⋚
,
⪋
,
≷
,
⋛
,
⪌
{\displaystyle \lessgtr ,\lesseqgtr ,\lesseqqgtr ,\gtrless ,\gtreqless ,\gtreqqless \!}
\leqslant , \nleqslant , \eqslantless
⩽
,
⪇
,
⪕
{\displaystyle \leqslant ,\nleqslant ,\eqslantless \!}
\geqslant , \ngeqslant , \eqslantgtr
⩾
,
⪈
,
⪖
{\displaystyle \geqslant ,\ngeqslant ,\eqslantgtr \!}
\lesssim , \lnsim , \lessapprox , \lnapprox
≲
,
⋦
,
⪅
,
⪉
{\displaystyle \lesssim ,\lnsim ,\lessapprox ,\lnapprox \!}
\gtrsim , \gnsim , \gtrapprox , \gnapprox
≳
,
⋧
,
⪆
,
⪊
{\displaystyle \gtrsim ,\gnsim ,\gtrapprox ,\gnapprox \,}
\prec , \nprec , \preceq , \npreceq , \precneqq
≺
,
⊀
,
⪯
,
⋠
,
⪵
{\displaystyle \prec ,\nprec ,\preceq ,\npreceq ,\precneqq \!}
\succ , \nsucc , \succeq , \nsucceq , \succneqq
≻
,
⊁
,
⪰
,
⋡
,
⪶
{\displaystyle \succ ,\nsucc ,\succeq ,\nsucceq ,\succneqq \!}
\preccurlyeq , \curlyeqprec
≼
,
⋞
{\displaystyle \preccurlyeq ,\curlyeqprec \,}
\succcurlyeq , \curlyeqsucc
≽
,
⋟
{\displaystyle \succcurlyeq ,\curlyeqsucc \,}
\precsim , \precnsim , \precapprox , \precnapprox
≾
,
⋨
,
⪷
,
⪹
{\displaystyle \precsim ,\precnsim ,\precapprox ,\precnapprox \,}
\succsim , \succnsim , \succapprox , \succnapprox
≿
,
⋩
,
⪸
,
⪺
{\displaystyle \succsim ,\succnsim ,\succapprox ,\succnapprox \,}
ဂျီဩမေထြီ
\parallel , \nparallel , \shortparallel , \nshortparallel
∥
,
∦
,
∥
,
∦
{\displaystyle \parallel ,\nparallel ,\shortparallel ,\nshortparallel \!}
\perp , \angle , \sphericalangle , \measuredangle , 45^ \circ
⊥
,
∠
,
∢
,
∡
,
45
∘
{\displaystyle \perp ,\angle ,\sphericalangle ,\measuredangle ,45^{\circ }\!}
\Box , \blacksquare , \diamond , \Diamond \lozenge , \blacklozenge , \bigstar
◻
,
◼
,
⋄
,
◊
◊
,
⧫
,
★
{\displaystyle \Box ,\blacksquare ,\diamond ,\Diamond \lozenge ,\blacklozenge ,\bigstar \!}
\bigcirc , \triangle \bigtriangleup , \bigtriangledown
◯
,
△
△
,
▽
{\displaystyle \bigcirc ,\triangle \bigtriangleup ,\bigtriangledown \!}
\vartriangle , \triangledown
△
,
▽
{\displaystyle \vartriangle ,\triangledown \!}
\blacktriangle , \blacktriangledown , \blacktriangleleft , \blacktriangleright
▴
,
▾
,
◂
,
▸
{\displaystyle \blacktriangle ,\blacktriangledown ,\blacktriangleleft ,\blacktriangleright \!}
လော့ဂျစ်
\forall , \exists , \nexists
∀
,
∃
,
∄
{\displaystyle \forall ,\exists ,\nexists \!}
\therefore , \because , \And
∴
,
∵
,
&
{\displaystyle \therefore ,\because ,\And \!}
\or \lor \vee , \curlyvee , \bigvee
∨
∨
∨
,
⋎
,
⋁
{\displaystyle \lor \lor \vee ,\curlyvee ,\bigvee \!}
\and \land \wedge , \curlywedge , \bigwedge
∧
∧
∧
,
⋏
,
⋀
{\displaystyle \land \land \wedge ,\curlywedge ,\bigwedge \!}
\bar { q} , \bar { abc} , \overline { q} , \overline { abc} ,
\lnot \neg , \not\operatorname { R} , \bot , \top
q
¯
,
a
b
c
¯
,
q
¯
,
a
b
c
¯
,
{\displaystyle {\bar {q}},{\bar {abc}},{\overline {q}},{\overline {abc}},\!}
¬
¬
,
⧸
R
,
⊥
,
⊤
{\displaystyle \lnot \neg ,\not \operatorname {R} ,\bot ,\top \!}
\vdash \dashv , \vDash , \Vdash , \models
⊢⊣
,
⊨
,
⊩
,
⊨
{\displaystyle \vdash \dashv ,\vDash ,\Vdash ,\models \!}
\Vvdash \nvdash \nVdash \nvDash \nVDash
⊪⊬⊮⊭⊯
{\displaystyle \Vvdash \nvdash \nVdash \nvDash \nVDash \!}
\ulcorner \urcorner \llcorner \lrcorner
⌜
⌝
⌞
⌟
{\displaystyle \ulcorner \urcorner \llcorner \lrcorner \,}
မြားများ
\Rrightarrow , \Lleftarrow
⇛
,
⇚
{\displaystyle \Rrightarrow ,\Lleftarrow \!}
\Rightarrow , \nRightarrow , \Longrightarrow \implies
⇒
,
⇏
,
⟹
⟹
{\displaystyle \Rightarrow ,\nRightarrow ,\Longrightarrow \implies \!}
\Leftarrow , \nLeftarrow , \Longleftarrow
⇐
,
⇍
,
⟸
{\displaystyle \Leftarrow ,\nLeftarrow ,\Longleftarrow \!}
\Leftrightarrow , \nLeftrightarrow , \Longleftrightarrow \iff
⇔
,
⇎
,
⟺
⟺
{\displaystyle \Leftrightarrow ,\nLeftrightarrow ,\Longleftrightarrow \iff \!}
\Uparrow , \Downarrow , \Updownarrow
⇑
,
⇓
,
⇕
{\displaystyle \Uparrow ,\Downarrow ,\Updownarrow \!}
\rightarrow \to , \nrightarrow , \longrightarrow
→→
,
↛
,
⟶
{\displaystyle \rightarrow \to ,\nrightarrow ,\longrightarrow \!}
\leftarrow \gets , \nleftarrow , \longleftarrow
←←
,
↚
,
⟵
{\displaystyle \leftarrow \gets ,\nleftarrow ,\longleftarrow \!}
\leftrightarrow , \nleftrightarrow , \longleftrightarrow
↔
,
↮
,
⟷
{\displaystyle \leftrightarrow ,\nleftrightarrow ,\longleftrightarrow \!}
\uparrow , \downarrow , \updownarrow
↑
,
↓
,
↕
{\displaystyle \uparrow ,\downarrow ,\updownarrow \!}
\nearrow , \swarrow , \nwarrow , \searrow
↗
,
↙
,
↖
,
↘
{\displaystyle \nearrow ,\swarrow ,\nwarrow ,\searrow \!}
\mapsto , \longmapsto
↦
,
⟼
{\displaystyle \mapsto ,\longmapsto \!}
\rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \leftrightharpoons
⇀⇁↼↽↿↾⇃⇂
⇌
⇋
{\displaystyle \rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \leftrightharpoons \,\!}
\curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \rightarrowtail \looparrowright
↶↺↰⇈⇉⇄↣↬
{\displaystyle \curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \rightarrowtail \looparrowright \,\!}
\curvearrowright \circlearrowright \Rsh \downdownarrows \leftleftarrows \leftrightarrows \leftarrowtail \looparrowleft
↷↻↱⇊⇇⇆↢↫
{\displaystyle \curvearrowright \circlearrowright \Rsh \downdownarrows \leftleftarrows \leftrightarrows \leftarrowtail \looparrowleft \,\!}
\hookrightarrow \hookleftarrow \multimap \leftrightsquigarrow \rightsquigarrow \twoheadrightarrow \twoheadleftarrow
↪↩⊸↭⇝↠↞
{\displaystyle \hookrightarrow \hookleftarrow \multimap \leftrightsquigarrow \rightsquigarrow \twoheadrightarrow \twoheadleftarrow \!}
Special
\amalg \P \S \% \dagger \ddagger \ldots \cdots
⨿
¶
§
%
†
‡
…
⋯
{\displaystyle \amalg \P \S \%\dagger \ddagger \ldots \cdots \!}
\smile \frown \wr \triangleleft \triangleright
⌣⌢
≀
◃
▹
{\displaystyle \smile \frown \wr \triangleleft \triangleright \!}
\diamondsuit , \heartsuit , \clubsuit , \spadesuit , \Game , \flat , \natural , \sharp
♢
,
♡
,
♣
,
♠
,
⅁
,
♭
,
♮
,
♯
{\displaystyle \diamondsuit ,\heartsuit ,\clubsuit ,\spadesuit ,\Game ,\flat ,\natural ,\sharp \!}
Unsorted (new stuff)
\diagup \diagdown \centerdot \ltimes \rtimes \leftthreetimes \rightthreetimes
╱
╲
⋅
⋉
⋊
⋋
⋌
{\displaystyle \diagup \diagdown \centerdot \ltimes \rtimes \leftthreetimes \rightthreetimes \!}
\eqcirc \circeq \triangleq \bumpeq \Bumpeq \doteqdot \risingdotseq \fallingdotseq
≖≗≜≏≎≑≓≒
{\displaystyle \eqcirc \circeq \triangleq \bumpeq \Bumpeq \doteqdot \risingdotseq \fallingdotseq \!}
\intercal \barwedge \veebar \doublebarwedge \between \pitchfork
⊺
⊼
⊻
⩞
≬⋔
{\displaystyle \intercal \barwedge \veebar \doublebarwedge \between \pitchfork \!}
\vartriangleleft \ntriangleleft \vartriangleright \ntriangleright
⊲⋪⊳⋫
{\displaystyle \vartriangleleft \ntriangleleft \vartriangleright \ntriangleright \!}
\trianglelefteq \ntrianglelefteq \trianglerighteq \ntrianglerighteq
⊴⋬⊵⋭
{\displaystyle \trianglelefteq \ntrianglelefteq \trianglerighteq \ntrianglerighteq \!}
For a little more semantics on these symbols, see the brief TeX Cookbook .
Larger expressions
Subscripts, superscripts, integrals
Feature
Syntax
How it looks rendered
Superscript
a^ 2
a
2
{\displaystyle a^{2}}
Subscript
a_ 2
a
2
{\displaystyle a_{2}}
Grouping
10^{ 30} a^{ 2+2}
10
30
a
2
+
2
{\displaystyle 10^{30}a^{2+2}}
a_{ i,j} b_{ f'}
a
i
,
j
b
f
′
{\displaystyle a_{i,j}b_{f'}}
Combining sub & super without and with horizontal separation
x_ 2^ 3
x
2
3
{\displaystyle x_{2}^{3}}
{ x_ 2}^ 3
x
2
3
{\displaystyle {x_{2}}^{3}\,\!}
Super super
10^{ 10^{ 8}}
10
10
8
{\displaystyle 10^{10^{8}}}
Preceding and/or additional sub & super
\sideset {_ 1^ 2}{_ 3^ 4} \prod _ a^ b
∏
1
2
∏
3
4
a
b
{\displaystyle \sideset {_{1}^{2}}{_{3}^{4}}\prod _{a}^{b}}
{}_ 1^ 2\!\Omega _ 3^ 4
1
2
Ω
3
4
{\displaystyle {}_{1}^{2}\!\Omega _{3}^{4}}
Stacking
\overset { \alpha }{ \omega }
ω
α
{\displaystyle {\overset {\alpha }{\omega }}}
\underset { \alpha }{ \omega }
ω
α
{\displaystyle {\underset {\alpha }{\omega }}}
\overset { \alpha }{ \underset { \gamma }{ \omega }}
ω
γ
α
{\displaystyle {\overset {\alpha }{\underset {\gamma }{\omega }}}}
\stackrel { \alpha }{ \omega }
ω
α
{\displaystyle {\stackrel {\alpha }{\omega }}}
Derivatives
x', y'', f', f''
x
′
,
y
″
,
f
′
,
f
″
{\displaystyle x',y'',f',f''}
x^ \prime , y^{ \prime\prime }
x
′
,
y
′
′
{\displaystyle x^{\prime },y^{\prime \prime }}
Derivative dots
\dot { x} , \ddot { x}
x
˙
,
x
¨
{\displaystyle {\dot {x}},{\ddot {x}}}
Underlines, overlines, vectors
\hat a \ \bar b \ \vec c
a
^
b
¯
c
→
{\displaystyle {\hat {a}}\ {\bar {b}}\ {\vec {c}}}
\overrightarrow { a b} \ \overleftarrow { c d} \ \widehat { d e f}
a
b
→
c
d
←
d
e
f
^
{\displaystyle {\overrightarrow {ab}}\ {\overleftarrow {cd}}\ {\widehat {def}}}
\overline { g h i} \ \underline { j k l}
g
h
i
¯
j
k
l
_
{\displaystyle {\overline {ghi}}\ {\underline {jkl}}}
Arc (workaround)
\overset { \frown } { AB}
A
B
⌢
{\displaystyle {\overset {\frown }{AB}}}
Arrows
A \xleftarrow { n+\mu -1} B \xrightarrow [T] { n\pm i-1} C
A
←
n
+
μ
−
1
B
→
T
n
±
i
−
1
C
{\displaystyle A{\xleftarrow {n+\mu -1}}B{\xrightarrow[{T}]{n\pm i-1}}C}
Overbraces
\overbrace { 1+2+\cdots +100 }^{ 5050}
1
+
2
+
⋯
+
100
⏞
5050
{\displaystyle \overbrace {1+2+\cdots +100} ^{5050}}
Underbraces
\underbrace { a+b+\cdots +z }_{ 26}
a
+
b
+
⋯
+
z
⏟
26
{\displaystyle \underbrace {a+b+\cdots +z} _{26}}
Sum
\sum _{ k=1}^ N k^ 2
∑
k
=
1
N
k
2
{\displaystyle \sum _{k=1}^{N}k^{2}}
Sum (force \textstyle
)
\textstyle \sum _{ k=1}^ N k^ 2
∑
k
=
1
N
k
2
{\displaystyle \textstyle \sum _{k=1}^{N}k^{2}}
Sum in a fraction (default \textstyle
)
\frac { \sum _{ k=1}^ N k^ 2}{ a}
∑
k
=
1
N
k
2
a
{\displaystyle {\frac {\sum _{k=1}^{N}k^{2}}{a}}}
Sum in a fraction (force \displaystyle
)
\frac { \displaystyle \sum _{ k=1}^ N k^ 2}{ a}
∑
k
=
1
N
k
2
a
{\displaystyle {\frac {\displaystyle \sum _{k=1}^{N}k^{2}}{a}}}
Sum in a fraction (alternative limits style)
\frac { \sum\limits ^{^ N}_{ k=1} k^ 2}{ a}
∑
k
=
1
N
k
2
a
{\displaystyle {\frac {\sum \limits _{k=1}^{^{N}}k^{2}}{a}}}
Product
\prod _{ i=1}^ N x_ i
∏
i
=
1
N
x
i
{\displaystyle \prod _{i=1}^{N}x_{i}}
Product (force \textstyle
)
\textstyle \prod _{ i=1}^ N x_ i
∏
i
=
1
N
x
i
{\displaystyle \textstyle \prod _{i=1}^{N}x_{i}}
Coproduct
\coprod _{ i=1}^ N x_ i
∐
i
=
1
N
x
i
{\displaystyle \coprod _{i=1}^{N}x_{i}}
Coproduct (force \textstyle
)
\textstyle \coprod _{ i=1}^ N x_ i
∐
i
=
1
N
x
i
{\displaystyle \textstyle \coprod _{i=1}^{N}x_{i}}
Limit
\lim _{ n \to \infty } x_ n
lim
n
→
∞
x
n
{\displaystyle \lim _{n\to \infty }x_{n}}
Limit (force \textstyle
)
\textstyle \lim _{ n \to \infty } x_ n
lim
n
→
∞
x
n
{\displaystyle \textstyle \lim _{n\to \infty }x_{n}}
Integral
\int\limits _{ 1}^{ 3} \frac { e^ 3/x}{ x^ 2} \, dx
∫
1
3
e
3
/
x
x
2
d
x
{\displaystyle \int \limits _{1}^{3}{\frac {e^{3}/x}{x^{2}}}\,dx}
Integral (alternative limits style)
\int _{ 1}^{ 3} \frac { e^ 3/x}{ x^ 2} \, dx
∫
1
3
e
3
/
x
x
2
d
x
{\displaystyle \int _{1}^{3}{\frac {e^{3}/x}{x^{2}}}\,dx}
Integral (force \textstyle
)
\textstyle \int\limits _{ -N}^{ N} e^ x\, dx
∫
−
N
N
e
x
d
x
{\displaystyle \textstyle \int \limits _{-N}^{N}e^{x}\,dx}
Integral (force \textstyle
, alternative limits style)
\textstyle \int _{ -N}^{ N} e^ x\, dx
∫
−
N
N
e
x
d
x
{\displaystyle \textstyle \int _{-N}^{N}e^{x}\,dx}
Double integral
\iint\limits _ D \, dx\, dy
∬
D
d
x
d
y
{\displaystyle \iint \limits _{D}\,dx\,dy}
Triple integral
\iiint\limits _ E \, dx\, dy\, dz
∭
E
d
x
d
y
d
z
{\displaystyle \iiint \limits _{E}\,dx\,dy\,dz}
Quadruple integral
\iiiint\limits _ F \, dx\, dy\, dz\, dt
⨌
F
d
x
d
y
d
z
d
t
{\displaystyle \iiiint \limits _{F}\,dx\,dy\,dz\,dt}
Line or path integral
\int _{ (x,y)\in C} x^ 3\, dx + 4y^ 2\, dy
∫
(
x
,
y
)
∈
C
x
3
d
x
+
4
y
2
d
y
{\displaystyle \int _{(x,y)\in C}x^{3}\,dx+4y^{2}\,dy}
Closed line or path integral
\oint _{ (x,y)\in C} x^ 3\, dx + 4y^ 2\, dy
∮
(
x
,
y
)
∈
C
x
3
d
x
+
4
y
2
d
y
{\displaystyle \oint _{(x,y)\in C}x^{3}\,dx+4y^{2}\,dy}
Intersections
\bigcap _{ i=_ 1}^ n E_ i
⋂
i
=
1
n
E
i
{\displaystyle \bigcap _{i=_{1}}^{n}E_{i}}
Unions
\bigcup _{ i=_ 1}^ n E_ i
⋃
i
=
1
n
E
i
{\displaystyle \bigcup _{i=_{1}}^{n}E_{i}}
Attribute:display
This screenshot shows the formula $E=mc^2$ being edited using VisualEditor. The visual editor shows a button that allows to choose one of three offered modes to display a formula.
As an alternative to text- and displaystyle the display attribute of the math tag might be used. Possible settings are "inline" and "block".
Inline
If the value of the display attribute is inline the render will render math in inline mode, i.e. there will be no new paragraph for the equation and the operators will be rendered consuming only little vertical space.
နမူနာ
The sum
∑
i
=
0
∞
2
−
i
{\textstyle \sum _{i=0}^{\infty }2^{-i}}
converges to 2.
The next line-width is not disturbed by large operators.
The code for the math example reads:
<math display= "inline" > \sum_{i=0}^\infty 2^{-i}</math>
Technical implementation
Technically it will add the command \textstyle will be added to the user input before the tex command is passed to the renderer. The result will be displayed without further by outputting the image or MathMLelement to the page.
Block
In block-style the equation is rendered in its own paragraph and the operator are rendered consuming less horizontal space.
နမူနာ
The equation
geometric series:
∑
i
=
0
∞
2
−
i
=
2
{\displaystyle {\text{geometric series:}}\quad {\begin{aligned}\sum _{i=0}^{\infty }2^{-i}=2\end{aligned}}}
is used in a joke about mathematicians entering a bar and ordering beer.
It was entered as
<math display= "block" > \text{geometric series:}\quad \sum_{i=0}^\infty 2^{-i}=2 </math>
Technical implementation
Technically it will add the command \displaystyle will be added to the user input, if the user input does not contain the string \displaystyle or \align before the tex command is passed to the renderer. The result will be displayed in a new paragraph.
Therefore the style of the MathImage is altered i.e. the style attribute "display:block;margin:auto" is added.
For MathML it is ensured that display=inline is replaced by display block which produces a new paragraph
Not specified
If nothing is specified the current behavior is preserved. That means all equation are rendered in display style but not using a new paragraph.
နမူနာ
The sum
∑
i
=
0
∞
2
−
i
{\displaystyle \sum _{i=0}^{\infty }2^{-i}}
converges to 2.
The next line-width is disturbed by large operators.
The code for the math example reads:
<math>\sum _{ i=0}^ \infty 2^{ -i} </math>
The equation
geometric series:
∑
i
=
0
∞
2
−
i
=
2
{\displaystyle {\text{geometric series:}}\quad \sum _{i=0}^{\infty }2^{-i}=2}
is used in a joke about mathematicians entering a bar and ordering beer.
It was entered as
<math>\text { geometric series:} \quad \sum _{ i=0}^ \infty 2^{ -i} =2 </math>
Fractions, matrices, multilines
Feature
Syntax
ဖော်ပြချက်
Fractions
\frac { 2}{ 4} =0.5
or { 2 \over 4} =0.5
2
4
=
0.5
{\displaystyle {\frac {2}{4}}=0.5}
Small fractions
\tfrac { 2}{ 4} = 0.5
2
4
=
0.5
{\displaystyle {\tfrac {2}{4}}=0.5}
Large (normal) fractions
\dfrac { 2}{ 4} = 0.5 \qquad \dfrac { 2}{ c + \dfrac { 2}{ d + \dfrac { 2}{ 4}}} = a
2
4
=
0.5
2
c
+
2
d
+
2
4
=
a
{\displaystyle {\dfrac {2}{4}}=0.5\qquad {\dfrac {2}{c+{\dfrac {2}{d+{\dfrac {2}{4}}}}}}=a}
Large (nested) fractions
\cfrac { 2}{ c + \cfrac { 2}{ d + \cfrac { 2}{ 4}}} = a
2
c
+
2
d
+
2
4
=
a
{\displaystyle {\cfrac {2}{c+{\cfrac {2}{d+{\cfrac {2}{4}}}}}}=a}
Cancellations in fractions
\cfrac { x}{ 1 + \cfrac { \cancel { y}}{ \cancel { y}}} = \cfrac { x}{ 2}
x
1
+
y
y
=
x
2
{\displaystyle {\cfrac {x}{1+{\cfrac {\cancel {y}}{\cancel {y}}}}}={\cfrac {x}{2}}}
Binomial coefficients
\binom { n}{ k}
(
n
k
)
{\displaystyle {\binom {n}{k}}}
Small binomial coefficients
\tbinom { n}{ k}
(
n
k
)
{\displaystyle {\tbinom {n}{k}}}
Large (normal) binomial coefficients
\dbinom { n}{ k}
(
n
k
)
{\displaystyle {\dbinom {n}{k}}}
Matrices
\begin { matrix}
x & y \\
z & v
\end { matrix}
x
y
z
v
{\displaystyle {\begin{matrix}x&y\\z&v\end{matrix}}}
\begin { vmatrix}
x & y \\
z & v
\end { vmatrix}
|
x
y
z
v
|
{\displaystyle {\begin{vmatrix}x&y\\z&v\end{vmatrix}}}
\begin { Vmatrix}
x & y \\
z & v
\end { Vmatrix}
‖
x
y
z
v
‖
{\displaystyle {\begin{Vmatrix}x&y\\z&v\end{Vmatrix}}}
\begin { bmatrix}
0 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 0
\end { bmatrix}
[
0
⋯
0
⋮
⋱
⋮
0
⋯
0
]
{\displaystyle {\begin{bmatrix}0&\cdots &0\\\vdots &\ddots &\vdots \\0&\cdots &0\end{bmatrix}}}
\begin { Bmatrix}
x & y \\
z & v
\end { Bmatrix}
{
x
y
z
v
}
{\displaystyle {\begin{Bmatrix}x&y\\z&v\end{Bmatrix}}}
\begin { pmatrix}
x & y \\
z & v
\end { pmatrix}
(
x
y
z
v
)
{\displaystyle {\begin{pmatrix}x&y\\z&v\end{pmatrix}}}
\bigl ( \begin { smallmatrix}
a& b\\ c& d
\end { smallmatrix} \bigr )
(
a
b
c
d
)
{\displaystyle {\bigl (}{\begin{smallmatrix}a&b\\c&d\end{smallmatrix}}{\bigr )}}
Case distinctions
f(n) =
\begin { cases}
n/2, & \text { if } n\text { is even} \\
3n+1, & \text { if } n\text { is odd}
\end { cases}
f
(
n
)
=
{
n
/
2
,
if
n
is even
3
n
+
1
,
if
n
is odd
{\displaystyle f(n)={\begin{cases}n/2,&{\text{if }}n{\text{ is even}}\\3n+1,&{\text{if }}n{\text{ is odd}}\end{cases}}}
Multiline equations
\begin { align}
f(x) & = (a+b)^ 2 \\
& = a^ 2+2ab+b^ 2 \\
\end { align}
f
(
x
)
=
(
a
+
b
)
2
=
a
2
+
2
a
b
+
b
2
{\displaystyle {\begin{aligned}f(x)&=(a+b)^{2}\\&=a^{2}+2ab+b^{2}\\\end{aligned}}}
\begin { alignat}{ 2}
f(x) & = (a-b)^ 2 \\
& = a^ 2-2ab+b^ 2 \\
\end { alignat}
f
(
x
)
=
(
a
−
b
)
2
=
a
2
−
2
a
b
+
b
2
{\displaystyle {\begin{alignedat}{2}f(x)&=(a-b)^{2}\\&=a^{2}-2ab+b^{2}\\\end{alignedat}}}
Multiline equations (must define number of columns used ({lcl})) (should not be used unless needed)
\begin { array}{ lcl}
z & = & a \\
f(x,y,z) & = & x + y + z
\end { array}
z
=
a
f
(
x
,
y
,
z
)
=
x
+
y
+
z
{\displaystyle {\begin{array}{lcl}z&=&a\\f(x,y,z)&=&x+y+z\end{array}}}
Multiline equations (more)
\begin { array}{ lcr}
z & = & a \\
f(x,y,z) & = & x + y + z
\end { array}
z
=
a
f
(
x
,
y
,
z
)
=
x
+
y
+
z
{\displaystyle {\begin{array}{lcr}z&=&a\\f(x,y,z)&=&x+y+z\end{array}}}
Breaking up a long expression so that it wraps when necessary, at the expense of destroying correct spacing
f(x) =
\sum _{ n=0}^ \infty a_ n x^ n =
a_ 0+a_ 1x+a_ 2x^ 2+\cdots
f
(
x
)
=
∑
n
=
0
∞
a
n
x
n
=
a
0
+
a
1
x
+
a
2
x
2
+
⋯
{\displaystyle f(x)=\sum _{n=0}^{\infty }a_{n}x^{n}=a_{0}+a_{1}x+a_{2}x^{2}+\cdots }
Simultaneous equations
\begin { cases}
3x + 5y + z \\
7x - 2y + 4z \\
-6x + 3y + 2z
\end { cases}
{
3
x
+
5
y
+
z
7
x
−
2
y
+
4
z
−
6
x
+
3
y
+
2
z
{\displaystyle {\begin{cases}3x+5y+z\\7x-2y+4z\\-6x+3y+2z\end{cases}}}
Arrays
\begin { array}{ |c|c|c|} a & b & S \\
\hline
0& 0& 1\\
0& 1& 1\\
1& 0& 1\\
1& 1& 0\\
\end { array}
a
b
S
0
0
1
0
1
1
1
0
1
1
1
0
{\displaystyle {\begin{array}{|c|c|c|}a&b&S\\\hline 0&0&1\\0&1&1\\1&0&1\\1&1&0\\\end{array}}}
Parenthesizing big expressions, brackets, bars
Feature
Syntax
ဖော်ပြချက်
N Bad
( \frac { 1}{ 2} )
(
1
2
)
{\displaystyle ({\frac {1}{2}})}
GoodY
\left ( \frac { 1}{ 2} \right )
(
1
2
)
{\displaystyle \left({\frac {1}{2}}\right)}
\left နှင့် \right တို့ဖြင့် အနားသတ်အမျိုးမျိုး အသုံးပြုနိုင်သည်။
Feature
Syntax
ဖော်ပြချက်
Parentheses
\left ( \frac { a}{ b} \right )
(
a
b
)
{\displaystyle \left({\frac {a}{b}}\right)}
ကွင်းများ
\left [ \frac { a}{ b} \right ] \quad
\left \lbrack \frac { a}{ b} \right \rbrack
[
a
b
]
[
a
b
]
{\displaystyle \left[{\frac {a}{b}}\right]\quad \left\lbrack {\frac {a}{b}}\right\rbrack }
Braces
\left \{ \frac { a}{ b} \right \} \quad
\left \lbrace \frac { a}{ b} \right \rbrace
{
a
b
}
{
a
b
}
{\displaystyle \left\{{\frac {a}{b}}\right\}\quad \left\lbrace {\frac {a}{b}}\right\rbrace }
Angle brackets
\left \langle \frac { a}{ b} \right \rangle
⟨
a
b
⟩
{\displaystyle \left\langle {\frac {a}{b}}\right\rangle }
ဘားများနှင့် နှစ်ထပ်ဘားများ
\left | \frac { a}{ b} \right \vert \quad
\left \Vert \frac { c}{ d} \right \|
|
a
b
|
‖
c
d
‖
{\displaystyle \left|{\frac {a}{b}}\right\vert \quad \left\Vert {\frac {c}{d}}\right\|}
Floor and ceiling functions:
\left \lfloor \frac { a}{ b} \right \rfloor \quad
\left \lceil \frac { c}{ d} \right \rceil
⌊
a
b
⌋
⌈
c
d
⌉
{\displaystyle \left\lfloor {\frac {a}{b}}\right\rfloor \quad \left\lceil {\frac {c}{d}}\right\rceil }
Slashes and backslashes
\left / \frac { a}{ b} \right \backslash
/
a
b
\
{\displaystyle \left/{\frac {a}{b}}\right\backslash }
အပေါ်၊ အောက်နှင့် အပေါ်-အောက် မြားများ
\left \uparrow \frac { a}{ b} \right \downarrow \quad
\left \Uparrow \frac { a}{ b} \right \Downarrow \quad
\left \updownarrow \frac { a}{ b} \right \Updownarrow
↑
a
b
↓
⇑
a
b
⇓
↕
a
b
⇕
{\displaystyle \left\uparrow {\frac {a}{b}}\right\downarrow \quad \left\Uparrow {\frac {a}{b}}\right\Downarrow \quad \left\updownarrow {\frac {a}{b}}\right\Updownarrow }
Delimiters can be mixed, as long as \left and \right match
\left [ 0,1 \right )
\left \langle \psi \right |
[
0
,
1
)
{\displaystyle \left[0,1\right)}
⟨
ψ
|
{\displaystyle \left\langle \psi \right|}
အနားသတ်ဘောင်များ မပေါ်စေလိုပါက \left. နှင့် \right. ကို အသုံးပြုပါ။
\left . \frac { A}{ B} \right \} \to X
A
B
}
→
X
{\displaystyle \left.{\frac {A}{B}}\right\}\to X}
Size of the delimiters (add "l" or "r" to indicate the side for proper spacing)
( \bigl ( \Bigl ( \biggl ( \Biggl ( \dots \Biggr ] \biggr ] \Bigr ] \bigr ] ]
(
(
(
(
(
…
]
]
]
]
]
{\displaystyle ({\bigl (}{\Bigl (}{\biggl (}{\Biggl (}\dots {\Biggr ]}{\biggr ]}{\Bigr ]}{\bigr ]}]}
\{ \bigl\{ \Bigl\{ \biggl\{ \Biggl\{ \dots
\Biggr\rangle \biggr\rangle \Bigr\rangle \bigr\rangle \rangle
{
{
{
{
{
…
⟩
⟩
⟩
⟩
⟩
{\displaystyle \{{\bigl \{}{\Bigl \{}{\biggl \{}{\Biggl \{}\dots {\Biggr \rangle }{\biggr \rangle }{\Bigr \rangle }{\bigr \rangle }\rangle }
\| \big\| \Big\| \bigg\| \Bigg\| \dots \Bigg | \bigg | \Big | \big | |
‖
‖
‖
‖
‖
…
|
|
|
|
|
{\displaystyle \|{\big \|}{\Big \|}{\bigg \|}{\Bigg \|}\dots {\Bigg |}{\bigg |}{\Big |}{\big |}|}
\lfloor \bigl\lfloor \Bigl\lfloor \biggl\lfloor \Biggl\lfloor \dots
\Biggr\rceil \biggr\rceil \Bigr\rceil \bigr\rceil \ceil
⌊
⌊
⌊
⌊
⌊
…
⌉
⌉
⌉
⌉
⌉
{\displaystyle \lfloor {\bigl \lfloor }{\Bigl \lfloor }{\biggl \lfloor }{\Biggl \lfloor }\dots {\Biggr \rceil }{\biggr \rceil }{\Bigr \rceil }{\bigr \rceil }\rceil }
\uparrow \big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow \dots
\Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow \Downarrow
↑
↑
↑
↑
↑
⋯
⇓
⇓
⇓
⇓
⇓
{\displaystyle \uparrow {\big \uparrow }{\Big \uparrow }{\bigg \uparrow }{\Bigg \uparrow }\dots {\Bigg \Downarrow }{\bigg \Downarrow }{\Big \Downarrow }{\big \Downarrow }\Downarrow }
\updownarrow \big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow \dots
\Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow \Updownarrow
↕
↕
↕
↕
↕
⋯
⇕
⇕
⇕
⇕
⇕
{\displaystyle \updownarrow {\big \updownarrow }{\Big \updownarrow }{\bigg \updownarrow }{\Bigg \updownarrow }\dots {\Bigg \Updownarrow }{\bigg \Updownarrow }{\Big \Updownarrow }{\big \Updownarrow }\Updownarrow }
/ \big / \Big / \bigg / \Bigg / \dots
\Bigg\backslash \bigg\backslash \Big\backslash \big\backslash \backslash
/
/
/
/
/
…
\
\
\
\
∖
{\displaystyle /{\big /}{\Big /}{\bigg /}{\Bigg /}\dots {\Bigg \backslash }{\bigg \backslash }{\Big \backslash }{\big \backslash }\backslash }
Equation numbering
The templates {{NumBlk }} and {{EquationRef }} can be used to number equations. The template {{EquationNote }} can be used to refer to a numbered equation from surrounding text. For example, the following syntax:
{{NumBlk|:|<math>x^2 + y^2 + z^2 = 1</math>|{{EquationRef|1}}}}
produces the following result (note the equation number in the right margin):
တမ်းပလိတ်:NumBlk
Later on, the text can refer to this equation by its number using syntax like this:
As seen in equation ({{EquationNote|1}}), blah blah blah...
The result looks like this:
As seen in equation (တမ်းပလိတ်:EquationNote ), blah blah blah...
Note that the equation number produced by {{EquationNote }} is a link that the user can click to go immediately to the cited equation.
Alphabets and typefaces
ဂရိစာလုံးများ
\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Eta \Theta
A
B
Γ
Δ
E
Z
H
Θ
{\displaystyle \mathrm {A} \mathrm {B} \Gamma \Delta \mathrm {E} \mathrm {Z} \mathrm {H} \Theta \!}
\Iota \Kappa \Lambda \Mu \Nu \Xi \Pi \Rho
I
K
Λ
M
N
Ξ
Π
P
{\displaystyle \mathrm {I} \mathrm {K} \Lambda \mathrm {M} \mathrm {N} \Xi \Pi \mathrm {P} \!}
\Sigma \Tau \Upsilon \Phi \Chi \Psi \Omega
Σ
T
Υ
Φ
X
Ψ
Ω
{\displaystyle \Sigma \mathrm {T} \Upsilon \Phi \mathrm {X} \Psi \Omega \!}
\alpha \beta \gamma \delta \epsilon \zeta \eta \theta
α
β
γ
δ
ϵ
ζ
η
θ
{\displaystyle \alpha \beta \gamma \delta \epsilon \zeta \eta \theta \!}
\iota \kappa \lambda \mu \nu \xi \pi \rho
ι
κ
λ
μ
ν
ξ
π
ρ
{\displaystyle \iota \kappa \lambda \mu \nu \xi \pi \rho \!}
\sigma \tau \upsilon \phi \chi \psi \omega
σ
τ
υ
ϕ
χ
ψ
ω
{\displaystyle \sigma \tau \upsilon \phi \chi \psi \omega \!}
\varepsilon \digamma \varkappa \varpi
ε
ϝ
ϰ
ϖ
{\displaystyle \varepsilon \digamma \varkappa \varpi \!}
\varrho \varsigma \vartheta \varphi
ϱ
ς
ϑ
φ
{\displaystyle \varrho \varsigma \vartheta \varphi \!}
ဟီဘရူးသင်္ကတများ
\aleph \beth \gimel \daleth
ℵ
ℶ
ℷ
ℸ
{\displaystyle \aleph \beth \gimel \daleth \!}
Blackboard bold/scripts
\mathbb { ABCDEFGHI}
A
B
C
D
E
F
G
H
I
{\displaystyle \mathbb {ABCDEFGHI} \!}
\mathbb { JKLMNOPQR}
J
K
L
M
N
O
P
Q
R
{\displaystyle \mathbb {JKLMNOPQR} \!}
\mathbb { STUVWXYZ}
S
T
U
V
W
X
Y
Z
{\displaystyle \mathbb {STUVWXYZ} \!}
Boldface
\mathbf { ABCDEFGHI}
A
B
C
D
E
F
G
H
I
{\displaystyle \mathbf {ABCDEFGHI} \!}
\mathbf { JKLMNOPQR}
J
K
L
M
N
O
P
Q
R
{\displaystyle \mathbf {JKLMNOPQR} \!}
\mathbf { STUVWXYZ}
S
T
U
V
W
X
Y
Z
{\displaystyle \mathbf {STUVWXYZ} \!}
\mathbf { abcdefghijklm}
a
b
c
d
e
f
g
h
i
j
k
l
m
{\displaystyle \mathbf {abcdefghijklm} \!}
\mathbf { nopqrstuvwxyz}
n
o
p
q
r
s
t
u
v
w
x
y
z
{\displaystyle \mathbf {nopqrstuvwxyz} \!}
\mathbf { 0123456789}
0123456789
{\displaystyle \mathbf {0123456789} \!}
Boldface (ဂရိ)
\boldsymbol { \Alpha\Beta\Gamma\Delta\Epsilon\Zeta\Eta\Theta }
A
B
Γ
Δ
E
Z
H
Θ
{\displaystyle {\boldsymbol {\mathrm {A} \mathrm {B} \Gamma \Delta \mathrm {E} \mathrm {Z} \mathrm {H} \Theta }}\!}
\boldsymbol { \Iota\Kappa\Lambda\Mu\Nu\Xi\Pi\Rho }
I
K
Λ
M
N
Ξ
Π
P
{\displaystyle {\boldsymbol {\mathrm {I} \mathrm {K} \Lambda \mathrm {M} \mathrm {N} \Xi \Pi \mathrm {P} }}\!}
\boldsymbol { \Sigma\Tau\Upsilon\Phi\Chi\Psi\Omega }
Σ
T
Υ
Φ
X
Ψ
Ω
{\displaystyle {\boldsymbol {\Sigma \mathrm {T} \Upsilon \Phi \mathrm {X} \Psi \Omega }}\!}
\boldsymbol { \alpha\beta\gamma\delta\epsilon\zeta\eta\theta }
α
β
γ
δ
ϵ
ζ
η
θ
{\displaystyle {\boldsymbol {\alpha \beta \gamma \delta \epsilon \zeta \eta \theta }}\!}
\boldsymbol { \iota\kappa\lambda\mu\nu\xi\pi\rho }
ι
κ
λ
μ
ν
ξ
π
ρ
{\displaystyle {\boldsymbol {\iota \kappa \lambda \mu \nu \xi \pi \rho }}\!}
\boldsymbol { \sigma\tau\upsilon\phi\chi\psi\omega }
σ
τ
υ
ϕ
χ
ψ
ω
{\displaystyle {\boldsymbol {\sigma \tau \upsilon \phi \chi \psi \omega }}\!}
\boldsymbol { \varepsilon\digamma\varkappa\varpi }
ε
ϝ
ϰ
ϖ
{\displaystyle {\boldsymbol {\varepsilon \digamma \varkappa \varpi }}\!}
\boldsymbol { \varrho\varsigma\vartheta\varphi }
ϱ
ς
ϑ
φ
{\displaystyle {\boldsymbol {\varrho \varsigma \vartheta \varphi }}\!}
စာလုံးစောင်း (default for Latin alphabet)
\mathit { 0123456789}
0123456789
{\displaystyle {\mathit {0123456789}}\!}
ဂရိစာလုံးစောင်း (default for lowercase Greek)
\mathit { \Alpha\Beta\Gamma\Delta\Epsilon\Zeta\Eta\Theta }
A
B
Γ
Δ
E
Z
H
Θ
{\displaystyle {\mathit {\mathrm {A} \mathrm {B} \Gamma \Delta \mathrm {E} \mathrm {Z} \mathrm {H} \Theta }}\!}
\mathit { \Iota\Kappa\Lambda\Mu\Nu\Xi\Pi\Rho }
I
K
Λ
M
N
Ξ
Π
P
{\displaystyle {\mathit {\mathrm {I} \mathrm {K} \Lambda \mathrm {M} \mathrm {N} \Xi \Pi \mathrm {P} }}\!}
\mathit { \Sigma\Tau\Upsilon\Phi\Chi\Psi\Omega }
Σ
T
Υ
Φ
X
Ψ
Ω
{\displaystyle {\mathit {\Sigma \mathrm {T} \Upsilon \Phi \mathrm {X} \Psi \Omega }}\!}
Roman typeface
\mathrm { ABCDEFGHI}
A
B
C
D
E
F
G
H
I
{\displaystyle \mathrm {ABCDEFGHI} \!}
\mathrm { JKLMNOPQR}
J
K
L
M
N
O
P
Q
R
{\displaystyle \mathrm {JKLMNOPQR} \!}
\mathrm { STUVWXYZ}
S
T
U
V
W
X
Y
Z
{\displaystyle \mathrm {STUVWXYZ} \!}
\mathrm { abcdefghijklm}
a
b
c
d
e
f
g
h
i
j
k
l
m
{\displaystyle \mathrm {abcdefghijklm} \!}
\mathrm { nopqrstuvwxyz}
n
o
p
q
r
s
t
u
v
w
x
y
z
{\displaystyle \mathrm {nopqrstuvwxyz} \!}
\mathrm { 0123456789}
0123456789
{\displaystyle \mathrm {0123456789} \!}
Sans serif
\mathsf { ABCDEFGHI}
A
B
C
D
E
F
G
H
I
{\displaystyle {\mathsf {ABCDEFGHI}}\!}
\mathsf { JKLMNOPQR}
J
K
L
M
N
O
P
Q
R
{\displaystyle {\mathsf {JKLMNOPQR}}\!}
\mathsf { STUVWXYZ}
S
T
U
V
W
X
Y
Z
{\displaystyle {\mathsf {STUVWXYZ}}\!}
\mathsf { abcdefghijklm}
a
b
c
d
e
f
g
h
i
j
k
l
m
{\displaystyle {\mathsf {abcdefghijklm}}\!}
\mathsf { nopqrstuvwxyz}
n
o
p
q
r
s
t
u
v
w
x
y
z
{\displaystyle {\mathsf {nopqrstuvwxyz}}\!}
\mathsf { 0123456789}
0123456789
{\displaystyle {\mathsf {0123456789}}\!}
Sans serif Greek (စာလုံးအကြီးသာလျှင်)
\mathsf { \Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Eta \Theta }
A
B
Γ
Δ
E
Z
H
Θ
{\displaystyle {\mathsf {\mathrm {A} \mathrm {B} \Gamma \Delta \mathrm {E} \mathrm {Z} \mathrm {H} \Theta }}\!}
\mathsf { \Iota \Kappa \Lambda \Mu \Nu \Xi \Pi \Rho }
I
K
Λ
M
N
Ξ
Π
P
{\displaystyle {\mathsf {\mathrm {I} \mathrm {K} \Lambda \mathrm {M} \mathrm {N} \Xi \Pi \mathrm {P} }}\!}
\mathsf { \Sigma \Tau \Upsilon \Phi \Chi \Psi \Omega }
Σ
T
Υ
Φ
X
Ψ
Ω
{\displaystyle {\mathsf {\Sigma \mathrm {T} \Upsilon \Phi \mathrm {X} \Psi \Omega }}\!}
Calligraphy/script
\mathcal { ABCDEFGHI}
A
B
C
D
E
F
G
H
I
{\displaystyle {\mathcal {ABCDEFGHI}}\!}
\mathcal { JKLMNOPQR}
J
K
L
M
N
O
P
Q
R
{\displaystyle {\mathcal {JKLMNOPQR}}\!}
\mathcal { STUVWXYZ}
S
T
U
V
W
X
Y
Z
{\displaystyle {\mathcal {STUVWXYZ}}\!}
Fraktur typeface
\mathfrak { ABCDEFGHI}
A
B
C
D
E
F
G
H
I
{\displaystyle {\mathfrak {ABCDEFGHI}}\!}
\mathfrak { JKLMNOPQR}
J
K
L
M
N
O
P
Q
R
{\displaystyle {\mathfrak {JKLMNOPQR}}\!}
\mathfrak { STUVWXYZ}
S
T
U
V
W
X
Y
Z
{\displaystyle {\mathfrak {STUVWXYZ}}\!}
\mathfrak { abcdefghijklm}
a
b
c
d
e
f
g
h
i
j
k
l
m
{\displaystyle {\mathfrak {abcdefghijklm}}\!}
\mathfrak { nopqrstuvwxyz}
n
o
p
q
r
s
t
u
v
w
x
y
z
{\displaystyle {\mathfrak {nopqrstuvwxyz}}\!}
\mathfrak { 0123456789}
0123456789
{\displaystyle {\mathfrak {0123456789}}\!}
Small scriptstyle text
{ \scriptstyle\text { abcdefghijklm}}
abcdefghijklm
{\displaystyle {\scriptstyle {\text{abcdefghijklm}}}}
Mixed text faces
Feature
Syntax
ဖော်ပြချက်
စာလုံးအစောင်းများ (ကွက်လပ်များကို ဥပက္ခာပြု)
x y z
x
y
z
{\displaystyle xyz}
Non-italicised characters
\text { x y z}
x y z
{\displaystyle {\text{x y z}}}
စာလုံးစောင်းအရော (မသင့်တော်)
\text { if} n \text { is even}
if
n
is even
{\displaystyle {\text{if}}n{\text{is even}}}
စာလုံးစောင်းအရော (သင့်တော်)
\text { if } n\text { is even}
if
n
is even
{\displaystyle {\text{if }}n{\text{ is even}}}
စာလုံးစောင်းအရော (အခြားနည်းလမ်း: ~ သို့မဟုတ် "\ " သည် ကွက်လပ်စပေ့ကို ဖြစ်စေ)
\text { if} ~n\ \text { is even}
if
n
is even
{\displaystyle {\text{if}}~n\ {\text{is even}}}
အရောင်များ
အီကွေးရှင်းများတွင် \color
ကုဒ်ကို အသုံးပြု၍ အရောင်များထည့်သွင်းနိုင်သည်။ နမူနာအားဖြင့်
{ \color { Blue}{ x^ 2}} +{ \color { Orange}{ 2x}} -{ \color { LimeGreen}{ 1}}
x
2
+
2
x
−
1
{\displaystyle {\color {Blue}{x^{2}}}+{\color {Orange}{2x}}-{\color {LimeGreen}{1}}}
x_{ 1,2} =\frac {{ \color { Blue}{ -b}} \pm\sqrt { \color { Red}{ b^ 2-4ac}}}{ \color { Green}{ 2a}}
x
1
,
2
=
−
b
±
b
2
−
4
a
c
2
a
{\displaystyle x_{1,2}={\frac {{\color {Blue}{-b}}\pm {\sqrt {\color {Red}{b^{2}-4ac}}}}{\color {Green}{2a}}}}
သင်္ကတစနစ် ကို နည်းလမ်းအမျိုးမျိုးဖြင့် သုံးနိုင်သည်။
{ \color { Blue} x^ 2} +{ \color { Orange} 2x} -{ \color { LimeGreen} 1}
works with both texvc and MathJax
x
2
+
2
x
−
1
{\displaystyle {\color {Blue}x^{2}}+{\color {Orange}2x}-{\color {LimeGreen}1}}
\color { Blue} x^ 2\color { Black} +\color { Orange} 2x\color { Black} -\color { LimeGreen} 1
works with both texvc and MathJax
x
2
+
2
x
−
1
{\displaystyle \color {Blue}x^{2}\color {Black}+\color {Orange}2x\color {Black}-\color {LimeGreen}1}
\color { Blue}{ x^ 2} +\color { Orange}{ 2x} -\color { LimeGreen}{ 1}
only works with MathJax
x
2
+
2
x
−
1
{\displaystyle \color {Blue}{x^{2}}+\color {Orange}{2x}-\color {LimeGreen}{1}}
အချို့အရောင်အမည်များကို အောက်ပါဇယားအတိုင်း ကြိုတင်သတ်မှတ်ထားပြီးဖြစ်သဖြင့် ဖော်မြူလာများထဲတွင် တိုက်ရိုက်ထည့်သွင်း အသုံးပြုနိုင်သည်။
အထောက်အပံ့ပေးသော အရောင်များ
Apricot
{\displaystyle \color {Apricot}{\text{Apricot}}}
Aquamarine
{\displaystyle \color {Aquamarine}{\text{Aquamarine}}}
Bittersweet
{\displaystyle \color {Bittersweet}{\text{Bittersweet}}}
Black
{\displaystyle \color {Black}{\text{Black}}}
Blue
{\displaystyle \color {Blue}{\text{Blue}}}
BlueGreen
{\displaystyle \color {BlueGreen}{\text{BlueGreen}}}
BlueViolet
{\displaystyle \color {BlueViolet}{\text{BlueViolet}}}
BrickRed
{\displaystyle \color {BrickRed}{\text{BrickRed}}}
Brown
{\displaystyle \color {Brown}{\text{Brown}}}
BurntOrange
{\displaystyle \color {BurntOrange}{\text{BurntOrange}}}
CadetBlue
{\displaystyle \color {CadetBlue}{\text{CadetBlue}}}
CarnationPink
{\displaystyle \color {CarnationPink}{\text{CarnationPink}}}
Cerulean
{\displaystyle \color {Cerulean}{\text{Cerulean}}}
CornflowerBlue
{\displaystyle \color {CornflowerBlue}{\text{CornflowerBlue}}}
Cyan
{\displaystyle \color {Cyan}{\text{Cyan}}}
Dandelion
{\displaystyle \color {Dandelion}{\text{Dandelion}}}
DarkOrchid
{\displaystyle \color {DarkOrchid}{\text{DarkOrchid}}}
Emerald
{\displaystyle \color {Emerald}{\text{Emerald}}}
ForestGreen
{\displaystyle \color {ForestGreen}{\text{ForestGreen}}}
Fuchsia
{\displaystyle \color {Fuchsia}{\text{Fuchsia}}}
Goldenrod
{\displaystyle \color {Goldenrod}{\text{Goldenrod}}}
Gray
{\displaystyle \color {Gray}{\text{Gray}}}
Green
{\displaystyle \color {Green}{\text{Green}}}
GreenYellow
{\displaystyle \color {GreenYellow}{\text{GreenYellow}}}
JungleGreen
{\displaystyle \color {JungleGreen}{\text{JungleGreen}}}
Lavender
{\displaystyle \color {Lavender}{\text{Lavender}}}
LimeGreen
{\displaystyle \color {LimeGreen}{\text{LimeGreen}}}
Magenta
{\displaystyle \color {Magenta}{\text{Magenta}}}
Mahogany
{\displaystyle \color {Mahogany}{\text{Mahogany}}}
Maroon
{\displaystyle \color {Maroon}{\text{Maroon}}}
Melon
{\displaystyle \color {Melon}{\text{Melon}}}
MidnightBlue
{\displaystyle \color {MidnightBlue}{\text{MidnightBlue}}}
Mulberry
{\displaystyle \color {Mulberry}{\text{Mulberry}}}
NavyBlue
{\displaystyle \color {NavyBlue}{\text{NavyBlue}}}
OliveGreen
{\displaystyle \color {OliveGreen}{\text{OliveGreen}}}
Orange
{\displaystyle \color {Orange}{\text{Orange}}}
OrangeRed
{\displaystyle \color {OrangeRed}{\text{OrangeRed}}}
Orchid
{\displaystyle \color {Orchid}{\text{Orchid}}}
Peach
{\displaystyle \color {Peach}{\text{Peach}}}
Periwinkle
{\displaystyle \color {Periwinkle}{\text{Periwinkle}}}
PineGreen
{\displaystyle \color {PineGreen}{\text{PineGreen}}}
Plum
{\displaystyle \color {Plum}{\text{Plum}}}
ProcessBlue
{\displaystyle \color {ProcessBlue}{\text{ProcessBlue}}}
Purple
{\displaystyle \color {Purple}{\text{Purple}}}
RawSienna
{\displaystyle \color {RawSienna}{\text{RawSienna}}}
Red
{\displaystyle \color {Red}{\text{Red}}}
RedOrange
{\displaystyle \color {RedOrange}{\text{RedOrange}}}
RedViolet
{\displaystyle \color {RedViolet}{\text{RedViolet}}}
Rhodamine
{\displaystyle \color {Rhodamine}{\text{Rhodamine}}}
RoyalBlue
{\displaystyle \color {RoyalBlue}{\text{RoyalBlue}}}
RoyalPurple
{\displaystyle \color {RoyalPurple}{\text{RoyalPurple}}}
RubineRed
{\displaystyle \color {RubineRed}{\text{RubineRed}}}
Salmon
{\displaystyle \color {Salmon}{\text{Salmon}}}
SeaGreen
{\displaystyle \color {SeaGreen}{\text{SeaGreen}}}
Sepia
{\displaystyle \color {Sepia}{\text{Sepia}}}
SkyBlue
{\displaystyle \color {SkyBlue}{\text{SkyBlue}}}
SpringGreen
{\displaystyle \color {SpringGreen}{\text{SpringGreen}}}
Tan
{\displaystyle \color {Tan}{\text{Tan}}}
TealBlue
{\displaystyle \color {TealBlue}{\text{TealBlue}}}
Thistle
{\displaystyle \color {Thistle}{\text{Thistle}}}
Turquoise
{\displaystyle \color {Turquoise}{\text{Turquoise}}}
Violet
{\displaystyle \color {Violet}{\text{Violet}}}
VioletRed
{\displaystyle \color {VioletRed}{\text{VioletRed}}}
White
{\displaystyle {\color {White}{\text{White}}}}
WildStrawberry
{\displaystyle \color {WildStrawberry}{\text{WildStrawberry}}}
Yellow
{\displaystyle \color {Yellow}{\text{Yellow}}}
YellowGreen
{\displaystyle \color {YellowGreen}{\text{YellowGreen}}}
YellowOrange
{\displaystyle \color {YellowOrange}{\text{YellowOrange}}}
မှတ်ရန်မှာ ကာလာဘလိုင်းဖြစ်နေသူများအဖို့ အကျိုးမရှိဖြစ်နေနိုင်သဖြင့် အရောင်များကို တစ်စုံတစ်ခုကို ပြသစေလိုရုံမျှဖြင့် အသုံးမပြုရန်ဖြစ်သည်။
Latex တွင် နောက်ခံအရောင်ကို သတ်မှတ်ပေးနိုင်သည့် လုပ်ဆောင်ချက်မပါရှိပေ။ ဇယားကွက်များအတွင်းတွင် နောက်ခံအရောင်ထည့်သွင်းလိုပါက CSS ကို အသုံးပြုနိုင်သည်။
{| class="wikitable" align="center"
| style="background: gray" | <math>x^2</math>
| style="background: Goldenrod" | <math>y^3</math>
|}
အောက်ပါအတိုင်း ပြသပေးသည်
x
2
{\displaystyle x^{2}}
y
3
{\displaystyle y^{3}}
{| class="wikitable" align="center"
| style="background: gray" | <math>x^2</math>
| style="background: Goldenrod" | <math>y^3</math>
|}
x
2
{\displaystyle x^{2}}
y
3
{\displaystyle y^{3}}
Custom colours can be defined using
\definecolor { myorange}{ rgb}{ 1,0.65,0.4} \color { myorange} e^{ i \pi } \color { Black} + 1 = 0
e
i
π
+
1
=
0
{\displaystyle \definecolor {myorange}{rgb}{1,0.65,0.4}\color {myorange}e^{i\pi }\color {Black}+1=0}
တမ်းပလိတ်:Help navigation
တမ်းပလိတ်:Wikipedia technical help