အမှုန်အရှိန်မြှင့်စက် ![]() ![]() အမှုန်အရှိန်မြင့်စက် သည် လျှပ်စစ်သံလိုက်စက်ကွင်းကို အသုံးချပြီး လျှပ်စစ်ဝင်နေသော အမှုန်များကို အလင်းအလျင်နီးပါးခန့် တွန်းကန်ရန် အသုံးချသည့် စက်ပစ္စည်းဖြစ်သည်။[၁] ကြီးမားသော အရှိန်မြင့်စက်များသည် အမှုန်ရူပဗေဒတွင် ထိတိုက်ပစ္စည်းအဖြစ် အသုံးပြုကြသည်။ သေးငယ်သော အမှုန်အရှိန်မြှင့်စက်များကိုလည်း ဆေးဘက်ဆိုင်ရာ၊ ရူပဗေဒနယ်ပယ်များတွင် အသုံးများကြသည်။ ယခုလက်ရှိ ကမ္ဘာပေါ်တွင် အရှိန်မြှင့်စက်ပေါင်း ၃၀၀၀၀ ကျော်ရှိသည်ဟု ဆိုသည်။[၂] အရှိန်မြင့်စက် အမျိုးအစား ၂ ခုရှိပြီး ယင်းတို့မှာ electrostatic နှင့် electrodynamic အရှိန်မြင့်စက်တို့ ဖြစ်ကြသည်။[၃] Electrostatic အရှိန်မြှင့်စက်များသည် လျှပ်စစ် စက်ကွင်းကို အသုံးပြုပြီး အမှုန်များကို အရှိန်မြှင့်တင်ကြသည်။ အသုံးအများဆုံး အမျိုးအစားများမှာ Cockcroft–Walton ဂျင်နယ်ရေတာနှင့် Van de Graaff ဂျင်နယ်ရေတာတို့ဖြစ်ကြသည်။ အသေးစား နမူနာကိုပြရလျင် ရုပ်မြင်သံကြားများတွင် အသုံးပြုသော cathode ray tube ဖြစ်သည်။ ယင်းပစ္စည်းများထဲတွင် အမှုန်များအတွက် ဖြစ်နိုင်သော kinetic energy မှာ ဗို့အားကိုမြှင့်တင်ခြင်းဖြင့် ဆုံးဖြတ်သည်။ အီလက်ထရို ဒိုင်းနမိုက် သို့မဟုတ် လျှပ်စစ်သံလိုက် အရှိန်မြင့်စက်များသည် တနည်းအားဖြင့် လျှပ်စစ်သံလိုက်စက်ကွင်း သို့မဟုတ် ရေဒီယိုကြိမ်နှုန်းစက်ကွင်းကို ဖယ်ထုတ်ရင်းဖြင့် အမှုန်ရှိန်မြင့်တင်ခြင်းဖြစ်သည်။ ယင်းအမှုန်အမျိုးအစားများသည် တူညီသောအရှိန်တင်နည်းဖြင့် အကြိမ်ပေါင်းများစွာ ဖြတ်ကျော်နိုင်သောကြောင့် အထွက်စွမ်းအင်သည် အရှိန်တင်စက်ကွင်းဖြင့် ကန့်သတ်မထားပေ။ ၁၉၂၀ ခုနှစ်များတွင် ပထမဆုံး မွမ်းမံခဲ့သော ယင်းအမျိုးအစားများသည် ခေတ်သစ်အရှိန်မြင့်စက်များအတွက် အခြေခံဖြစ်ပေသည်။ ထိတိုက်စက်များသည် အက်တမ်အောက်ကမ္ဘာ တည်ဆောက်ပုံ၏ ခြေရာကို ပေးစွမ်းနိုင်သောကြောင့် အရှိန်မြင့်စက်များကို အများအားဖြင့် ၂၀ ရာစုတွင် အက်တမ်ဖြိုခွင်းစက်ဟု ရည်ညွန်းကြသည်။[၄] အရှိန်မြင့်စက်အများစုသည် တကယ်တမ်းတွင် အက်တမ်အောက်အမှုန်များနှင့် တွန်းကန်သော်လည်း ယေဘုယျအားဖြင့် အရှိန်မြင့်စက်များဟုသာ ရည်ညွန်းကြသည်။[၅][၆][၇]
အသုံးချမှုများ![]() စွမ်းအားမြင့် အမှုန်များတန်းသည် အခြေခံနှင့် လက်တွေ့အသုံးချ သိပ္ပံသုတေသနလုပ်ငန်းများတွင် အသုံးဝင်ပြီး နည်းပညာရပ်နှင့် အခြားသော စက်မှုနယ်ပယ်များအတွက်လည်း အသုံးဝင်လှသည်။ ခန့်မှန်းချက်အရ တစ်ကမ္ဘာလုံး အမှုန်အရှိန်မြင့်စက်ပေါင်း ၃၀၀၀၀ ရှိသည်ဟုဆိုသည်။ ၁ ရာခိုင်နှုန်းသာလျင် ၁ GeV အထက်စွမ်းအားရှိပြီး ၄၄ ရာခိုင်နှုန်းမှာ ရေဒီယို ကုသရေးစနစ်အတွက်ဖြစ်ကာ ၉ ရာခိုင်နှုန်းမှာ စက်မှုလုပ်ငန်းနှင့် အခြေခံ သုတေသနလုပ်ငန်းများအတွက်ဖြစ်သည်။ ၄ ရာခိုင်နှုန်းမှာ ဇီဝဆေးလုပ်ငန်းနှင့် စွမ်းအားနိမ့် သုတေသနလုပ်ငန်းအတွက် ဖြစ်ကြသည်။[၈] ဂရပ်မျဉ်းက ညွန်ပြနေသည်မှာ ၂၀၁၂ မှ အချက်အလက်ဖြစ်ပြီး ရင်းမြစ်များစွာက အခြေခံထားခြင်း ဖြစ်သည်။[၉] စွမ်းအားမြင့် ရူပဗေဒအရာဝတ္ထု၊ အာကာသ၊ အချိန်၏ တည်ဆောက်ပုံနှင့် ဒိုင်းနမိုက်သဘောတရားများကို လေ့လာရာတွင် ရူပဗေဒပညာရှင်များသည် စွမ်းအားမြင့်သော အရိုးရှင်းဆုံးအရာများကို ရှာဖွေကြလေ့ရှိသည်။ ယင်းကဲ့သို့သော အမှုန်အရှိန်မြင့်စက်များသည် ဂီဂါဗို့ (GeV) များစွာ ထုတ်ပေးသည်။ အမှုန်အရှိန်မြင့်စက်များဖြင့်သာ လက်ပတွန်၊ အီလက်ထရွန်၊ ပိုစီထရွန်၊ ဖိုတွန်၊ ဂလူယွန် အစရှိသော အက်တက်အောက်အမှုန်များကို လေ့လာနိုင်ပေသည်။ ယင်းကဲ့သို့လေ့လာရန် GeV ရာချီကာ သို့မဟုတ် ထိုထက်ပိုမိုလိုအပ်သည်။ အခြေခံကျသော အမှုန်ရူပဗေဒပညာရပ်အတွက် အသုံးပြုသည့် အကြီးမားဆုံးနှင့် စွမ်းအင်အများဆုံး အမှုန်အရှိန်မြှင့်စက်မှာ ၂၀၀၉ ခုနှစ်ကတည်းက လည်ပတ်နေသော CERN ရှိ Large Hadron Collider (LHC) ဖြစ်သည်။[၁၀] နယူကလိယ ရူပဗေဒနှင့် အိုင်ဆိုတုပ် ထုတ်လုပ်ခြင်းနယူကလိယား ရူပဗေဒပညာရှင်များနှင့် စကြဝဠာဗေဒပညာရှင်များသည် အီလက်ထရွန်များကို ထက်ခြမ်းခွဲရန် အက်တော့မစ် နယူကလိယများကို အသုံးချနိုင်ကောင်းသည်။ ယင်းကဲ့သို့ လုပ်ဆောင်ချက်များသည် မြင့်မားသောအပူချိန်နှင့် သိပ်သည်းမှုတို့တွင် နယူကလိယများ၏ တည်ဆောက်ပုံကို လေ့လာရန် ဖြစ်ပေသည်။ ထိုကဲ့သို့အခြေနေသည် မဟာပေါက်ကွဲမှုတွင် ဖြစ်ပွားသည့်ဖြစ်စဉ်နှင့် ဆင်တူလှသည်။ ယင်းကဲ့သို့ လေ့လာမှုများတွင် အိုင်ယွန်း သို့မဟုတ် ရွှေများကို မြင့်မားသောစွမ်းအားဖြင့် လေးလံသော အက်တမ်များကို ထိတိုက်မိစေရန် စီမံခြင်းဖြစ်သည်။ ယင်းကဲ့သို့လုပ်ဆောင်သည့် အကြီးမားဆုံး အရှိန်မြင့်စက်မှာ ဘရုတ်ဟေဗန် အမျိုးသားဓာတ်ခွဲခန်းမှ Relativistic Heavy Ion Collider (RHIC) ဖြစ်သည်။ အမှုန်အရှိန်မြင့်စက်များသည် ပရိုတွန်တန်းများကို ထုတ်လုပ်ပေးနိုင်သေးသည်။ ယင်းသည် ပရိုတွန်ကြွယ်ဝသည့် ဆေးဘက်တွင် အသုံးချသော အိုင်ဆိုတုပ်များကို ထုတ်ပေးနိုင်ပြီး နယူထရွန်ကြွယ်ဝသော အိုင်ဆိုတုပ်များသည် fission ဓာတ်ပေါင်းဖိုများတွင် ပြုလုပ်သည်။ မကြာသေးခင်မှ 99Mo အား ဟိုက်ဒရိုဂျင် အိုင်ဆိုတုပ်များကို အရှိန်မြင့်တင်ရင်း မည်ကဲ့သို့ပြုလုပ်ရသည်ကို တွေ့ရှိခဲ့သည်။[၁၁] သို့သော်လည်း ဤနည်းလမ်းသည် ထရီသီယမ်အား ထုတ်လုပ်ရန် ဓာတ်ပေါင်းဖိုတစ်ခု လိုအပ်ပေသည်။ ယင်းကဲ့သို့သော နမူနာဓာတ်ပေါင်းဖိုမှာ LANSCE ရှိ Los Alamos အမျိုးသား ဓာတ်ခွဲခန်းဖြစ်သည်။ ဆင်ခရိုထရွန် ဖြာထွက်မှုအခြေခံစိတ်ဝင်စားမှု ရှိသော်လည်း စွမ်းအားမြင့် အီလက်ထရွန်များကို စွမ်းအင်မြင့် ဖိုတွန်များနှင့် ဆင်ခရွန်ထရွန် ရောင်ခြည်ဖြာထွက်မှုဖြင့် အင်မတန်တောက်ပသော အလင်းများ ထုတ်ပေးနိုင်ကောင်းသည်။ ဆင်ခရွန်ထရွန်များကို အက်တမ် တည်ဆောက်ပုံ၊ ဓာတုဗေဒ၊ ရူပဗေဒ၊ ဇီဝဗေဒနှင့် နည်းပညာနယ်ပယ်များအား လေ့လာရာတွင် များစွာ အသုံးချသည်။ ဆင်ခရွန်ထရွန် အလင်းပင်ရင်းများစွာ ကမ္ဘာအနှံ့ ရှိသည်။ ဥပမာအားဖြင့် အမေရိကန်တွင် Stanford Synchrotron Radiation Lightsource နှင့် SLAC National Accelerator Laboratory တို့ဖြစ်ကြသည်။ European Synchrotron Radiation Facility မှလည်း ပြင်သစ်နိုင်ငံတွင် တည်ဆောက်ထားကာ အင်းဆက်များအား အခန်းထဲတွင် လှောင်ပိတ်ကာ သုံးဘက်မြင်ပုံရိပ် အသေးစိတ်များ ဖော်ထုတ်ရန် အသုံးချခဲ့သည်။[၁၂] ယင်းတို့သည် အတော်အသင့် စွမ်းအင်မြင့် အီလက်ထရွန် အရှိန်မြင့်စက်များ ဖြစ်ကြပေသည်။ စွမ်းအားနိမ့်စက်ပစ္စည်းများနှင့် အမှုန်ကုသမှုနေ့စဉ်မြင်တွေ့နေရသည့် အမှုန်အရှိန်မြင့်စက် နမူနာများမှာ တီလီဗေးရှင်းများတွင် ထည့်ထားသော cathode ray tube များနှင့် X-ray ဂျင်နေရေတာများ ဖြစ်ကြသည်။ ယင်းစွမ်းအားနိမ့် အရှိန်မြင့်စက်များကိုမူ အီလက်ထရုတ် တစ်စုံ၊ ဗို့အား ၁၀၀၀ ဝန်းကျင် DC တို့ကို အသုံးပြုထားသည်။ အိုင်စီ ဆားကပ်ပတ်လမ်းများတွင်အသုံးပြုသော ion implanter များသည်လည်း စွမ်းအားနိမ့် အရှိန်မြင့်စက်များ ဖြစ်ကြသည်။
သမိုင်းကြောင်းErnest Lawrence ၏ ပထမဆုံး ဆိုင်ကလိုထရွန်စက်သည် အချင်းအားဖြင့် ၄ လက်မ ရှည်လျားပြီး ၁၉၃၉ နောက်ပိုင်းတွင် သူသည် ဝင်ရိုးစွန်းမျက်နှာပြင် ၆၀ လက်မရှိသောစက်ကို တည်ဆောက်ခဲ့သည်။ ၁၉၄၂ ခုနှစ်တွင် ၁၈၄ လက်မအရှည်ရှိသော စက်ကို တည်ဆောက်ရန် စီစဉ်ထားခဲ့သော်လည်း ဒုတိယကမ္ဘာစစ်ကြောင့် ရပ်နားခဲ့ရသည်။ သို့သော်လည်း သူတေသနနှင့် ဆေးဘက်ဆိုင်ရာအတွက် နှစ်ပေါင်းများစွာ ဆက်လက် အကောင်အထည်ဖော်ခဲ့သည်။ ပထမဆုံး ကြီးမားသော ပရိုတွန် ဆိုင်ခရိုထရွန်သည် ဘရုတ်ဟေဗန် အမျိုးသား ဓာတ်ခွဲခန်းမှ Cosmotron ဖြစ်ပြီး ယင်းသည် ပရိုတွန်များအား ၃ GeV ခန့် အရှိန်မြင့်ခဲ့သည်။ ၁၉၅၄ ခုနှစ်တွင် ပြီးဆုံးသော ဘာကလေမှ Bevatron သည် ဆန့်ကျင်ဘက်ပရိုတွန်များ ဖန်တီးနိုင်သည့်အထိ ပရိုတွန်များအား အရှိန်မြင့်တင်ရန် ဒီဇိုင်းဆွဲခဲ့သည်။ ၁၉၉၁ ခုနှစ်တွင် အကောင်အထည်ဖော် တည်ဆောက်ခဲ့သည့် တက္ကဆပ်ပြည်နယ်မှ Superconducting Super Collider (SSC) သည် မြေအောက်သို့ မီတာအနည်းငယ်ခန့် အကျယ်ယူရသောကြောင့် ကုန်ကျစရိတ်များပြားကာ ရပ်နားခဲ့ရသည်။ တွင်းနက်ထုတ်လုပ်ခြင်းနှင့် လူထုစိုးရိမ်ဖွယ်ရာများအနာဂတ်တွင် ကြိုတင်ဟောကိန်းထုတ်ထားသော ဆူပါကြိုးမျှင်သီအိုရီ မှန်ကန်ခဲ့ပါက စွမ်းအားအများဆုံးအရှိန်မြင့်စက်များ၌ တွင်းနက်များ ထုတ်လုပ်နိုင်ခြေသည် ဖြစ်လာနိုင်သည်။[၁၃][၁၄] ယင်းဖြစ်နိုင်ခြေကိစ္စသည် ၂၀၀၈ ခုနှစ်အတွင်း LHC တွင် မောင်းနှင်ရေးနှင့်ပတ်သက်ပြီး လူထုကြား စိုးရိမ်ဖွယ်ဖြစ်လာခဲ့သည်။ LHC Safety Assessment Group ကမူ စိုးရိမ်ဖွယ်မရှိဟု ဖော်ပြခဲ့သည်။[၁၅] အကယ်၍ တွင်းနက်ကို ဖန်တီးပါက ကြိုတင်ခန့်မှန်းထားသော ဘက်ကစတိန်း-ဟောကင်း သီအိုရီအရ တွင်းနက်သည် လျင်မြန်ဆန်စွာ အငွေ့ပျံသွားမည်ဖြစ်သည်။ သို့သော်လည်း လက်တွေ့အရမူ အတည်ပြုနိုင်ခြင်းမရှိပေ။ အကယ်၍ အရှိန်မြင့်စက်သည် တွင်းနက်များကို ထုတ်လုပ်ပေးနိုင်မည်ဆိုပါက ကော့စမစ်ရောင်ခြည်များသည် အဆပေါင်းများစွာ ထုတ်လုပ်ပေးမည်ဖြစ်သည်။[၁၆]
အရှိန်မြင့်စက် မောင်းနှင်သူအရှိန်မြင့်စက် မောင်းနှင်သူ သည် အရှိန်မောင်းစက်အား ထိန်းချုပ်မောင်းနှင်ပြီး လေ့လာဆန်းစစ်သူဖြစ်သည်။ သူတို့သည် လေဟာနယ်၊ သံလိုက်၊ ပါဝါရင်းမြစ်၊ ရေဒီယိုကြိမ်နှုန်းနှင့် ရေအားပေးစက်များ ကောင်းမွန်စေရန်အလိုငှာ ပစ်မှတ်များ၏ တည်နေရာကို သတ်မှတ်ပေးခြင်း၊ ထိန်းပြင်သမားများနှင့် ဆက်သွယ်ကူညီပေးခြင်းလုပ်ငန်းများ ဆောင်ရွက်ပေးသည်။ ကိုးကား
ပြင်ပလင့်များဝီကီမီဒီယာ ကွန်မွန်းစ်တွင် Particle accelerators
နှင့် ပတ်သက်သော မီဒီယာ ရှိသည်။
|
Portal di Ensiklopedia Dunia