ପାଟିଗଣିତ ତଥା ସଂଖ୍ୟାତତ୍ତ୍ୱରେ ଅନ୍ତତଃ ଦୁଇଟି ପୂର୍ଣ୍ଣାଙ୍କର ( ଯଥା 'କ' ଓ 'ଖ' ) ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ (LCM ବା ଲ. ସା. ଗୁ. )ହେଉଛି ସେହି କ୍ଷୁଦ୍ରତମ ଧନାତ୍ମକ ସଂଖ୍ୟା ଯାହା ଉଭୟ 'କ' ଓ 'ଖ'ଦ୍ୱାରା ବିଭାଜ୍ୟ ।.[୧] ସେହିପରି ଦୁଇରୁ ଅଧିକ ପୂର୍ଣ୍ଣାଙ୍କର ଲ. ସା. ଗୁ. ହେବ ସେହି କ୍ଷୁଦ୍ରତମ ଧନାତ୍ମକ ସଂଖ୍ୟା ଯାହା ନିଆଯାଇଥିବା ପ୍ରତ୍ୟେକ ସଂଖ୍ୟାଦ୍ୱାରା ବିଭାଜ୍ୟ ହେବ ।[୨] ଯେହେତୁ ଶୁନ୍ୟଦ୍ୱାରା ଗାଣିତିକ ବିଭାଜନ ଏକ ଅସମ୍ଭବ ପ୍ରକ୍ରିୟା, ଅଣଶୁନ୍ୟ ସଂଖ୍ୟାମାନଙ୍କର ହିଁ ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ ନିର୍ଣ୍ଣୟ କରାଯାଇପାରିବ ।[୩] ତଥାପି କେତେକ ଗାଣିତିକଙ୍କ ମତରେ 'କ' (ଅନଶୁନ୍ୟ ସଂଖ୍ୟା) ଏବଂ ଶୁନ୍ୟ (୦)ର ଲ. ସା. ଗୁ. ଶୁନ୍ୟ (୦) ହେବ ।
ଗାଣିତିକ ପ୍ରୟୋଗ
- ଭଗ୍ନାଂଶ ଗୁଡିକର ଯୋଗ/ବିଯୋଗ ପ୍ରକ୍ରିୟାରେ ହରମାନଙ୍କର ଲସାଗୁ ହେବ ଯୋଗଫଳର ଲସାଗୁ ।
- ପୂର୍ଣ୍ଣାଙ୍କମାନଙ୍କର ଲସାଗୁ ଓ ଗସାଗୁର ଗୁଣଫଳ ହେବ ସଂପୃକ୍ତ ସଂଖ୍ୟାମାନଙ୍କର ଗୁଣଫଳ ।[୪]
ଉଦାହରଣ
ଗୁଣନୀୟକ ପଦ୍ଧତିରେ ୪ ଓ ୬ର ଲସାଗୁ ନିର୍ଣ୍ଣୟ:
୪ର ଗୁଣିତକସବୁ ହେଲା:- ୪, ୮, ୧୨, ୧୬, ୨୦, ୨୪ ...............
୬ର ଗୁଣିତକ ସବୁ ହେଲା:- ୬, ୧୨, ୧୮, ୨୪ .................
ଉଭୟ ମଧ୍ୟରେ ସାଧାରଣ ଗୁଣିତକଗୁଡିକ ହେଲା: ୧୨, ୨୪ .........
ଅତଏବ ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକଟି ହେଉଛି - ୧୨
ଆଧାର
ବାହାର ଲିଙ୍କ