ਮੌਡਿਊਲ ਹੋਮੋਮੌਰਫਿਜ਼ਮ

ਇੱਕ ਮੌਡਿਊਲ ਹੋਮੋਮੌਰਫਿਜ਼ਮ ਉਹ ਮੈਪ ਹੁੰਦਾ ਹੈ ਜੋ ਮੌਡਿਊਲ (ਮਾਪ ਅੰਕ ਜਾਂ ਮਾਪਾਂਕ) ਬਣਤਰ ਸੁਰੱਖਿਅਤ ਕਰਦਾ ਹੈ।

ਪਰਿਭਾਸ਼ਾ

ਅਲਜਬਰੇ ਵਿੱਚ, ਇੱਕ ਮੌਡਿਊਲ ਹੋਮੋਮੌਰਫਿਜ਼ਮ ਮੌਡਿਊਲਾਂ (ਮਾਪਾਂਕਾਂ) ਦਰਮਿਆਨ ਇੱਕ ਫੰਕਸ਼ਨ ਹੁੰਦਾ ਹੈ ਜੋ ਮੌਡਿਊਲ ਬਣਤਰਾਂ ਨੂੰ ਸੁਰੱਖਿਅਤ ਕਰਦਾ ਹੈ। ਸਪੱਸ਼ਟ ਤੌਰ ਤੇ ਕਹਿੰਦੇ ਹੋਏ, ਜੇਕਰ ਕਿਸੇ ਰਿੰਗ R ਉੱਤੇ M ਅਤੇ N ਖੱਬੇ ਮੌਡਿਊਲ ਹੋਣ, ਤਾਂ ਇੱਕ ਫੰਕਸ਼ਨ ਇੱਕ ਮੌਡਿਊਲ ਹੋਮੋਮੌਰਫਿਜ਼ਮ ਜਾਂ ਇੱਕ R-ਲੀਨੀਅਰ ਮੈਪ ਕਿਹਾ ਜਾਵੇਗਾ ਜੇਕਰ M ਵਿਚਲੇ ਕਿਸੇ ਵੀ x, y ਲਈ ਅਤੇ R ਵਿਚਲੇ ਕਿਸੇ ਵੀ r ਲਈ ਇਹ ਸ਼ਰਤਾਂ ਪੂਰੀਆਂ ਹੋਣ,

ਜੇਕਰ M, N ਸੱਜੇ ਮੌਡਿਊਲ (ਮਾਪਾਂਕ) ਹੋਣ, ਤਾਂ ਦੂਜੀ ਸ਼ਰਤ ਇਸ ਸ਼ਰਤ ਨਾਲ ਬਦਲ ਜਾਂਦੀ ਹੈ;

f ਅਧੀਨ ਜ਼ੀਰੋ ਐਲੀਮੈਂਟਾਂ ਦੀ ਮੁਢਲੀ ਤਸਵੀਰ ਨੂੰ f ਦਾ ਕਰਨਲ ਕਿਹਾ ਜਾਂਦਾ ਹੈ। M ਤੋਂ N ਤੱਕ ਦੇ ਸਾਰੇ ਮਾਪ ਅੰਕ ਹੋਮੋਮੌਰਫਿਜ਼ਮਾਂ ਦੇ ਸੈੱਟ ਨੂੰ HomR(M, N) ਚਿੰਨ ਨਾਲ ਲਿਖਿਆ ਜਾਂਦਾ ਹੈ। ਇਹ ਇੱਕ ਅਬੇਲੀਅਨ ਗਰੁੱਪ ਹੁੰਦਾ ਹੈ ਪਰ ਜਰੂਰੀ ਨਹੀਂ ਹੈ ਇਹ ਇੱਕ ਮੌਡਿਊਲ (ਮਾਪ ਅੰਕ) ਵੀ ਹੋਵੇ ਬਸ਼ਰਤੇ R ਕਮਿਉਟੇਟਿਵ (ਕ੍ਰਮ ਵਟਾਂਦਰਾ ਸਬੰਧ ਰੱਖਣ ਵਾਲਾ) ਹੋਵੇ।

ਆਇਸੋਮੌਰਫਿਜ਼ਮ ਥਿਊਰਮਾਂ ਮਾਪ ਅੰਕ ਹੋਮੋਮੌਰਫਿਜ਼ਮਾਂ ਲਈ ਲਾਗੂ ਰਹਿੰਦੀਆਂ ਹਨ।

Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia

Kembali kehalaman sebelumnya