ਸੈੱਟ (ਗਣਿਤ)

ਗਣਿਤ ਵਿੱਚ, ਇੱਕ ਸੈੱਟ ਚੰਗੀ ਤਰਾਂ ਪ੍ਰਭਾਸ਼ਿਤ ਵੱਖ-ਵੱਖ ਆਬਜੈਕਟਾਂ ਦੇ ਭੰਡਾਰ ਨੂੰ ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਮਿਸਾਲ ਲਈ, ਅੰਕ 2, 4, ਅਤੇ 6 ਵੱਖ-ਵੱਖ ਹਨ, ਜਦ ਇਹ ਵੱਖਰੇ ਤੌਰ 'ਤੇ ਮੰਨੇ ਜਾਂਦੇ ਹਨ, ਪਰ ਜਦ ਉਹਨਾਂ ਨੂੰ ਸਮੂਹਿਕ ਤੌਰ ਮੰਨਿਆ 'ਤੇ ਜਾਂਦਾ ਹੈ ਤਾਂ ਉਹ ਤਿੰਨ ਆਕਾਰ ਦਾ ਇੱਕ ਸਿੰਗਲ ਦਾ ਸੈੱਟ ਬਣਾਉਂਦੇ ਹਨ, ਜਿਸਨੂੰ ਇਸ ਤਰਾਂ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ: {2,4,6}। ਸੈੱਟ ਗਣਿਤ ਵਿੱਚ ਸਭ ਬੁਨਿਆਦੀ ਧਾਰਨਾ ਵਿਚੋਂ ਇੱਕ ਹਨ। 19 ਸਦੀ ਦੇ ਅੰਤ ਵਿੱਚ ਵਿਕਸਿਤ ਸੈੱਟ ਥਿਊਰੀ ਹੁਣ ਗਣਿਤ ਦਾ ਸਰਵਵਿਆਪੀ ਹਿੱਸਾ ਹੈ ਅਤੇ ਇਸਨੂੰ ਇੱਕ ਬੁਨਿਆਦ ਦੀ ਤਰਾਂ ਵਰਤਿਆ ਜਾ ਸਕਦਾ ਸਕਦਾ ਹੈ ਜਿਸ ਤੋਂ ਲਗਭਗ ਸਾਰਾ ਗਣਿਤ ਬਣਿਆ ਹੋਇਆ ਹੈ। ਗਣਿਤ ਸਿੱਖਿਆ ਵਿੱਚ, ਐਲੀਮਟਰੀ ਵਿਸ਼ੇ ਜਿਵੇਂ ਕਿ ਵੈੰਨ ਚਿੱਤਰ, ਇੱਕ ਨੌਜਵਾਨ ਦੀ ਉਮਰ 'ਤੇ ਸਿਖਾਇਆ ਜਾਂਦਾ ਹੈ, ਜਦਕਿ ਹੋਰ ਤਕਨੀਕੀ ਧਾਰਨਾ ਯੂਨੀਵਰਸਿਟੀ ਦੀ ਡਿਗਰੀ ਵੇਲੇ ਸਿਖਾਈਆਂ ਜਾਂਦੀਆਂ ਹਨ ਹੈ। ਸੈੱਟ ਸ਼ਬਦ ਜਰਮਨ ਸ਼ਬਦ ਮੇਨਗੇ ਤੋਂ ਲਿਆ ਗਿਆ ਹੈ। ਇਹ ਨਾਮ ਪਿਹਲੀ ਵਾਰ ਬਰਨਾਰਡ ਬੋਲਜ਼ਾਨੋ ਵੱਲੋਂ ਦਿੱਤਾ ਗਿਆ ਸੀ।

ਬੁਨਿਆਦੀ ਓਪਰੇਸ਼ਨ

ਦਿੱਤੇ ਸੈੱਟ ਤੋਂ ਨਵੇਂ ਸੈੱਟ ਦਾ ਨਿਰਮਾਣ ਕਰਨ ਲਈ ਕਈ ਬੁਨਿਆਦੀ ਓਪਰੇਸ਼ਨ ਹਨ.

ਯੂਨੀਅਨ

A and B ਦਾ ਯੂਨੀਅਨ, ਜਿਸਨੂੰ AB ਦੀ ਤਰਾਂ ਲਿਖਿਆ ਜਾਂਦਾ ਹੈ।

ਦੋ ਸੈਟ ਆਪਸ ਵਿੱਚ ਜੋੜੇ ਜਾ ਸਕਦੇ ਹਨ . A ∪ B ਦਾ ਮਤਲਬ ਹੈ “””””A and B ਦਾ ਯੂਨੀਅਨ, ਇਸ ਯੂਨੀਅਨ ਵਿੱਚ “””A and B ਦੋਵੇਂ ਦੇ ਮੈਬਰ ਹਨ.

ਉਦਾਹਰਨਾਂ:

  • {1, 2} ∪ {1, 2} = {1, 2}.
  • {1, 2} ∪ {2, 3} = {1, 2, 3}.
  • {1, 2, 3} ∪ {3, 4, 5} = {1, 2, 3, 4, 5}

'ਯੂਨੀਅਨ ਦੇ ਕੁਝ ਬੁਨਿਆਦੀ ਵਿਸ਼ੇਸ਼ਤਾ:'

  • AB = BA.
  • A ∪ (BC) = (AB) ∪ C.
  • A ⊆ (AB).
  • AA = A.
  • A ∪ ∅ = A.
  • AB ਜੇਕਰ AB = B.
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia

Kembali kehalaman sebelumnya