ਸੰਭਾਵਿਕਤਾ ਸਿਧਾਂਤਸੰਭਾਵਿਕਤਾ ਸਿਧਾਂਤ ਸੰਭਾਵਿਕਤਾ ਨਾਲ ਸੰਬੰਧਿਤ ਗਣਿਤ ਦੀ ਇੱਕ ਸ਼ਾਖਾ ਹੈ, ਜੋ ਅਨਿਸ਼ਚਿਤ ਘਟਨਾਵਾਂ ਦਾ ਵਿਸ਼ਲੇਸ਼ਣ ਹੈ।[1] ਪਰਿਭਾਸ਼ਾਸੰਭਾਵਿਕਤਾ ਦੀ ਵਿਗਿਆਨਿਕ ਪਰਿਭਾਸ਼ਾ ਕੀ ਹੈ? ਚੰਗਾ, ਆਓ ਕਿਸੇ ਆਮ ਸਿਸਟਮ S ਉੱਤੇ ਕੀਤੇ ਕਿਸੇ ਨਿਰੀਖਣ ਤੇ ਵਿਚਾਰ ਕਰੀਏ। ਇਸ ਨਿਰੀਖਣ ਦਾ ਨਤੀਜਾ ਬਹੁਤ ਸਾਰੇ ਸੰਭਵ ਨਤੀਜਿਆਂ ਵਿੱਚੋਂ ਕੋਈ ਵੀ ਹੋ ਸਕਦਾ ਹੈ। ਮੰਨ ਲਓ ਕਿ ਅਸੀਂ ਕਿਸੇ ਆਮ ਨਤੀਜੇ X ਦੀ ਪ੍ਰੌਬੇਬਿਲਟੀ ਪਤਾ ਕਰਨੀ ਚਾਹੁੰਦੇ ਹਾਂ। ਕਿਸੇ ਸੰਭਾਵਿਕਤਾ ਨੂੰ ਸਮਝਾਉਣ ਲਈ, ਸਾਨੂੰ ਸਿਸਟਮ ਨੂੰ ਇੱਕੋ ਜਿਹੇ ਬਹੁਤ ਸਾਰੇ ਸਿਸਟਮਾਂ ਦੇ ਵੱਡੇ ਸੈੱਟ Σ ਦਾ ਮੈਂਬਰ ਹੋਣ ਦੇ ਰੂਪ ਵਿੱਚ ਵਿਚਾਰ ਕਰਨਾ ਪਏਗਾ। ਇੱਕੋ ਜਿਹੇ ਸਿਸਟਮਾਂ ਦੇ ਵੱਡੇ ਸਮੂਹ (ਗਰੁੱਪ) ਨੂੰ ਗਣਿਤਸ਼ਾਸਤਰੀ ਇੱਕ ਸੁੰਦਰ ਨਾਮ ਦਿੰਦੇ ਹਨ। ਉਹ ਅਜਿਹੇ ਕਿਸੇ ਗਰੁੱਪ ਨੂੰ ਇੱਕ “ਐਨਸੈਂਬਲ” ਕਹਿੰਦੇ ਹਨ, ਜੋ “ਗਰੁੱਪ” ਸ਼ਬਦ ਦਾ ਫਰੈਂਚ ਰੂਪ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ, ਆਓ ਇੱਕੋ ਜਿਹੇ ਸਿਸਟਮਾਂ S ਦੇ ਇੱਕ ਐਨਸੈਂਬਲ Σਤੇ ਵਿਚਾਰ ਕਰੀਏ। ਨਤੀਜੇ X ਦੀ ਪਰੌਬੇਬਿਲਟੀ ਨੂੰ ਐਨਸੈਂਬਲ ਵਿੱਚ ਇਸ ਨਤੀਜੇ ਵਾਲੇ ਸਿਸਟਮਾਂ ਦੀ ਗਿਣਤੀ ਅਤੇ ਕੁੱਲ ਸਿਸਟਮਾਂ ਦੀ ਗਿਣਤੀ ਨਾਲ ਅਨੁਪਾਤ ਦੇ ਰੂਪ ਵਿੱਚ ਇੰਝ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਕਿ, ਕੁੱਲ ਸਿਸਟਮਾਂ ਦੀ ਗਿਣਤੀ ਦੀ ਅਨੰਤ ਤੱਕ ਦੀ ਗਿਣਤੀ ਵੱਲ ਹੱਦ ਹੋਵੇ। ਅਸੀਂ ਇਸ ਨੂੰ ਚਿੰਨਾਂ ਦੇ ਰੂਪ ਵਿੱਚ ਇੰਝ ਲਿਖ ਸਕਦੇ ਹਾਂ P(X) = lim (Ω(Σ)→∞)(Ω(X))/(Ω(Σ)) ਜਿੱਥੇ Ω(Σ) ਐਨਸੈਂਬਲ ਅੰਦਰ ਸਿਸਟਮਾਂ ਦੀ ਕੁੱਲ ਗਿਣਤੀ ਹੈ, ਅਤੇ Ω(X) ਉਹਨਾਂ ਸਿਸਟਮਾਂ ਦੀ ਗਿਣਤੀ ਹੈ ਜੋ ਨਤੀਜਾ X ਰੱਖਦੇ ਹਨ। ਅਸੀਂ ਦੇਖ ਸਕਦੇ ਹਾਂ ਕਿ ਪਰੌਬੇਬਿਲਟੀ P(X) ਜਰੂਰ ਹੀ 0 ਅਤੇ 1 ਦਰਮਿਆਨ ਦਾ ਕੋਈ ਨੰਬਰ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ। ਜੇਕਰ ਕੋਈ ਵੀ ਸਿਸਟਮ ਨਤੀਜਾ X ਨਾ ਰੱਖਦਾ ਹੋਵੇ ਤਾਂ ਪਰੌਬੇਬਿਲਟੀ 0 ਰਹੇਗੀ, ਭਾਵੇਂ ਸਿਸਟਮਾਂ ਦੀ ਗਿਣਤੀ ਅਨੰਤ ਹੋਵੇ। ਇਹ ਸਿਰਫ ਇਹ ਕਹਿਣ ਦਾ ਤਰੀਕਾ ਹੁੰਦਾ ਹੈ ਕਿ ਨਤੀਜਾ X ਆਉਣ ਦਾ ਕੋਈ ਚਾਂਸ (ਮੌਕਾ) ਨਹੀਂ ਹੁੰਦਾ। ਪਰੌਬੇਬਿਲਟੀ “ਇਕਾਈ” ਹੁੰਦੀ ਹੈ ਜੇਕਰ ਸਾਰੇ ਸਿਸਟਮ ਅਨੰਤ ਤੱਕ ਦੀ ਹੱਦ ਤੱਕ ਦੀ ਗਿਣਤੀ ਤੱਕ ਵੀ ਨਤੀਜਾ X ਦੇਣ। ਇਹ ਸਿਰਫ ਇਸ ਤਰ੍ਹਾਂ ਕਹਿਣ ਦਾ ਇੱਕ ਹੋਰ ਤਰੀਕਾ ਹੁੰਦਾ ਹੈ ਕਿ ਨਤੀਜਾ X ਵਾਪਰਨ ਦੇ ਲਈ ਵਚਨਬੱਧ ਹੈ। ਹਵਾਲੇ
|
Portal di Ensiklopedia Dunia