Апология математика (Харди)«Апология математика» (англ. A Mathematician’s Apology; 1940) — эссе британского математика Годфри Харди (1877—1947) на тему красоты математики. Знакомит читателей, не имеющих специального математического образования, со спецификой мышления «математика за работой». СодержаниеВ названии книги Харди использует слово «Апология» в смысле формального оправдания или защиты (как, например, «Апология Сократа» Платона), а не в смысле просьбы о прощении. Харди почувствовал необходимость оправдать работу своей жизни в математике в то время, в основном, по двум причинам. Во-первых, в возрасте 62 лет Харди чувствовал приближение старости (он пережил сердечный приступ в 1939 году) и снижение его математического творчества и мастерства. Посвятив время написанию «Апологии», Харди признавал, что его собственная жизнь как творческого математика закончена. В своем предисловии к изданию книги 1967 г., Ч. П. Сноу описывает «Апологию», как «страстные стенания по творческим силам, которые были и которые больше никогда не вернутся». По словам Харди,
Во-вторых, в начале Второй мировой войны Харди, убеждённый пацифист, желал оправдать своё убеждение в том, что математика должна быть продолжена для неё же самой, а не ради её приложений. Он хотел написать книгу, в которой мог бы объяснить свою философию математикам следующего поколения; книгу, которая будет защищать математиков путём разработки по существу исключительно чистой математики, без необходимости прибегать к достижениям прикладной математики в целях оправдания общей значимости математики; книгу, способную вдохновить грядущие поколения чистых математиков. Харди был убеждённым атеистом, и его «оправдание» обращено не к Богу, а к соратникам и коллегам. Одной из главных тем книги является красота, которой обладает математика, которую Харди сравнивает с живописью, шахматами и поэзией. Для Харди самой красивой математикой является та, которая не имеет практического применения во внешнем мире (чистая математика). В первую очередь это «математика для математики» — теория чисел. Харди утверждает, что если полезные знания определяются как знания, которые могут влиять на материальное благополучие человечества в ближайшем будущем (если не прямо сейчас), так, что чисто интеллектуальное удовлетворение несущественно, то большая часть высшей математики бесполезна. Он оправдывает стремление к чистой математике аргументом, что её совершенная «ненужность» в целом лишь означает, что она не может быть использована для причинения вреда. С другой стороны, Харди считает многое из прикладной математики «тривиальным», «уродливым» или «скучным», и сравнивает её с «настоящей математикой», которой является, по его мнению, чистая математика. Харди также прокомментировал фразу, приписываемую Карлу Фридриху Гауссу: «Математика — царица наук, а теория чисел — королева математики». Некоторые люди считают, что только абсолютная неприменимость теории чисел привела Гаусса к этому заявлению; однако, Харди отмечает, что это, конечно, не причина. Если были бы обнаружены приложения теории чисел, то, конечно, никто не будет пытаться свергнуть «королеву математики» из-за этого. То, что сказал Гаусс, означало, по словам Харди, что основные понятия, составляющие теорию чисел, глубже и элегантнее по сравнению с любой другой областью математики. Ещё одна мысль эссе — о том, что математика — это «занятие для молодых», поэтому всем, кто талантлив в математике, следует развивать и использовать этот талант, пока они ещё молоды, до того, как их способность получать оригинальные математические результаты начнёт снижаться в среднем возрасте. Это мнение отражает усиление депрессии Харди, связанной с угасанием собственной математической активности. Для самого Харди математика была, несомненно, искусством, сферой творческой деятельности. КритикаМнения Харди сильно повлияли на академическую культуру в университетах Кембриджа и Оксфорда между Первой и Второй мировыми войнами. Основная критика «Апологии» сводится к тому, что математик не может закрыться в башне из слоновой кости, его открытия (хочет он того или нет) рано или поздно будут применены на практике. Некоторые примеры Харди ныне кажутся неудачными. Например, он пишет:
Несмотря на это, без теории чисел невозможно представить современную криптографию. Однако более известные примеры Харди элегантных математических открытий, не имеющих практического использования (доказательство бесконечности простых чисел и иррациональность квадратного корня из двух), пока ещё не опровергнуты. Применимость математической концепции не является причиной того, что Харди считал прикладную математику почему-либо уступающей чистой математике, однако простота и обыденность, характеризующая прикладную математику, повлияли на пренебрежительное отношение к ней Харди. Он, например, считал, что теорема Ролля, хотя и имеет некоторое значение для анализа, не идёт ни в какое сравнение с элегантностью результатов, полученных Леонардом Эйлером, Эваристом Галуа и другими «чистыми» математиками. В РоссииВ. И. Арнольд отозвался очень резко:
Однако эта цитата искажена и вырвана из контекста, на самом деле Харди пишет:
Литература
Ссылки
|
Portal di Ensiklopedia Dunia