Аффинная геометрия

Аффи́нная геоме́трия (лат. affinis ‘родственный’) — раздел геометрии, в котором изучаются свойства фигур, инвариантные относительно аффинных преобразований (например, отношение направленных отрезков, параллельность прямых и так далее). Группа аффинных преобразований содержит различные подгруппы, которым соответствуют геометрии, подчинённые аффинной: эквиаффинная геометрия, центроаффинная геометрия и другие.

История

Свойства геометрических фигур, переходящих друг в друга при аффинных преобразованиях, изучались Мёбиусом ещё в первой половине XIX века: в 1827 году вышла его книга «Барицентрическое исчисление»[1], которая стала основополагающей в аффинной геометрии. Однако понятие «аффинная геометрия» возникло лишь после появления в 1872 году «Эрлангенской программы» Ф. Клейна[2], согласно которой каждой группе преобразований отвечает своя геометрия, которая изучает свойства фигур, инвариантные относительно преобразований этой группы[3].

Примечания

  1. Möbius A. F.  Der barycentrische Calcül: ein neues Hülfsmittel zur analytischen Behandlung der Geometrie. — Leipzig: J. A. Barth, 1827. — XXIV + 454 S.
  2. Klein F.  Das Erlanger Programm: Vergleichende Betrachtungen über neuere geometrische Forschungen. — Leipzig: Akademische Verlagsgesellschaft Geest & Portig, 1974. — 84 S. — (Ostwalds Klassiker der exakten Wissenschaften. Bd. 253).
  3. Комацу, 1981, с. 37—38.

Литература

Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia

Kembali kehalaman sebelumnya