Баллонная астрономия — астрономические наблюдения, проводимые с аэростатов. Телескоп при этом подвешивается к одному или нескольким стратостатам, которые поднимаются на высоту 20-40 км, то есть выше плотных слоёв атмосферы. Это приводит к значительному увеличению разрешающей силы, и проницания телескопа, позволяет вести наблюдения в полосах частот, которые блокируются атмосферой.[1]
Аэростатные телескопы гораздо дешевле космических телескопов, но их недостатками являются относительно малая высота и малое время полёта, составляющее лишь несколько дней. Однако, максимальная высота подъёма аэростатных телескопов — 50 км, что гораздо больше максимальной высоты для воздушных обсерваторий, таких как Воздушная обсерватория имени Койпера и SOFIA, которые могут подниматься лишь до 15 км.[1][2] С другой стороны, приземление аэростатных телескопов сопряжено с трудностями и зачастую приводит к повреждению или уничтожению телескопа.
Аэростат уменьшает поле обзора телескопа в области зенита, но длинный подвес способен уменьшить загораживание баллоном до 2°. Телескоп должен быть устойчив к воздействию ветров стратосферы, а также к вращению и колебательным движениям аэростата. Азимутальная устойчивость может быть обеспечена магнитометром вкупе с гироскопом или астровизиром для мелких коррекций.[2]
12-дюймовый телескоп, прикреплённый к полиэтиленовому аэростату.[3] Первый аэростатный телескоп.[4] Производил фотосъёмку Солнца. В 1959 году был запущен ещё раз, теперь с телевизионным передатчиком.
Спектрометр высокого разрешения для изучения гамма-лучей и жёсткого рентгеновского излучения от солнечных вспышек и галактических источников. Использовал массив охлаждаемых жидким азотом германиевых детекторов.[6]
Микроволновый телескоп с криогенным детектором частиц, запущенный в долгий полёт над Антарктикой. Был использован для наблюдения реликтового излучения.[7]
Телескоп с широким полем зрения, работающий в диапазоне от ближнего ИК до ближнего УФ и оптически ограниченной дифракцией, картографирует распределение темной материи в скоплениях галактик с помощью слабого гравитационного линзирования.[16]
↑ 12Cheng, Jingquan. The principles of astronomical telescope design (англ.). — Springer, 2009. — Vol. 360. — P. 509—510. — (Astrophysics and space science library). — ISBN 0-387-88790-3.
↑Zimmerman, Robert. The universe in a mirror: the saga of the Hubble Telescope and the visionaries who built it (англ.). — Princeton University Press, 2010. — P. 18. — ISBN 0-691-14635-7.
↑Hofmann, W.; Lemke, D.; Thum, C. Surface brightness of the central region of the Milky Way at 2.4 and 3.4 microns (англ.) // Astronomy and Astrophysics : journal. — 1977. — May (vol. 57, no. 1—2). — P. 111—114. — Bibcode: 1977A&A....57..111H.
↑Источник (неопр.). Дата обращения: 23 апреля 2023. Архивировано из оригинала 20 апреля 2014 года.
↑[Crill, B.P.; Ade, P.A.R; Battistelli, E.S. (2008). Oschmann, Jr, Jacobus M; De Graauw, Mattheus W. M; MacEwen, Howard A (eds.). "SPIDER: a balloon-borne large-scale CMB polarimeter". Space Telescopes and Instrumentation 2008: Optical, Infrared, and Millimeter. SPIE. 7010: 70102P. arXiv:0807.1548. Bibcode:2008SPIE.7010E..2PC. doi:10.1117/12.787446. S2CID 7924096.]