Красная дуга окружности является геодезической в дисковой модели Пуанкаре. Она проектируется на коричневую геодезическую на зелёном гиперболоиде.
Гиперболоидная модель, известная также как модель Минковского или лоренцева модель (Герман Минковский, Хендрик Лоренц), является моделью n-мерной геометрии Лобачевского, в которой каждая точка представлена точкой на верхней поверхности двуполостного гиперболоида в (n+1)-мерном пространстве Минковского а m-плоскости представлены пересечением (m+1)-плоскостей в пространстве Минковского с S+. Функция гиперболического расстояния в этой модели удовлетворяет простому выражению. Гиперболоидная модель n-мерного гиперболического пространства тесно связана с моделью Бельтрами — Клейна и дисковой моделью Пуанкаре, так как они являются проективными моделями в смысле, что группа движений[англ.] является подгруппой проективной группы.
Если являются векторами в (n + 1)-мерном координатном пространстве , квадратичная форма Минковского определяется как
Вектора , такие, что , образуют n-мерный гиперболоидS, состоящий из двух связных компонент, или листов — верхний, или будущее, лист , где и нижний, или прошлое, лист , где . Точки n-мерной гиперболоидной модели являются точками на листе будущего .
Прямая в гиперболическом n-пространстве моделируется геодезической на гиперболоиде. Геодезическая на гиперболоиде является (непустым) пересечением с двумерным линейным подпространством (включая начало координат) n+1-мерного пространства Минковского. Если мы возьмём в качестве u и v базисные вектора линейного подпространства с
и используем w как параметр для точек на геодезической, то
Более обще, k-мерная «плоскость» в гиперболическом n-пространстве будет моделироваться (непустым) пересечением гиперболоида с k+1-мерным линейным подпространством (включая начало координат) пространства Минковского.
Движения
Неопределённая ортогональная группа O(1,n), называемая также (n+1)-мерной группой Лоренца, является группой Ливещественных (n+1)×(n+1) матриц, которая сохраняет билинейную форму Минковского. Другими словами, это группа линейных движенийпространства Минковского. В частности, эта группа сохраняет гиперболоид S. Напомним, что неопределённые ортогональные группы имеют четыре связные компоненты, соответствующие обращению или сохранению ориентации на каждом подпространстве (здесь — 1-мерном и n-мерном), и образуют четверную группу Клейна. Подгруппа O(1,n), которая сохраняет знак первой координаты, является ортохронной группой Лоренца, обозначаемой O+(1,n), и имеет две компоненты, соответствующие сохранению или обращению ориентации подпространства. Её подгруппа SO+(1,n), состоящая из матриц с определителем единица, является связной группой Ли размерности n(n+1)/2, которая действует на S+ линейными автоморфизмами и сохраняет гиперболическое расстояние. Это действие транзитивно и является стабилизатором вектора (1,0,…,0), состоящим из матриц вида
Согласно Джереми Грею (1986)[5]Пуанкаре использовал гиперболоидную модель в его персональных заметках в 1880. Пуанкаре опубликовал свои результаты в 1881, в которых он обсуждает инвариантность квадратичной формы [6]. Грей показывает, где гиперболоидная модель явно упоминается в более поздних работах Пуанкаре[7]. Для подробностей см. История преобразований Лоренца, раздел «Пуанкаре»[англ.].
Позднее (1885) Киллинг утверждал, что фраза координаты Вейерштрасса соотносится с элементами гиперболоидной модели следующим образом: если задано скалярное произведение на , координаты Вейерштрасса точки равны
Х. Дженсен сфокусирвался на гиперболоидной модели в статье 1909 года «Представление гиперболической геометрии на двухполостном гиперболоиде»[12].
В 1993 У. Ф. Рейнольдс изложил раннюю историю модели в статье, напечатанной в журнале American Mathematical Monthly[13].
Будучи общепризнанной моделью в двадцатом веке, её отождествил с Geschwindigkeitsvectoren (нем., векторами скорости) Герман Минковский в пространстве Минковского. Скотт Вальтер в статье 1999 «Неевклидов стиль специальной теории относительности»[14] упоминает осведомлённость Минковского, но ведёт происхождение модели к Гельмгольцу, а не к Вейерштрассу или Киллингу.
В ранние годы релятивистскую гиперболоидную модель использовал Владимир Варичак[англ.] для объяснения физики скорости. В его докладе в Немецком Математическом обществе в 1912 он ссылался на координаты Вейерштрасса[15].
Varićak V. On the Non-Euclidean Interpretation of the Theory of Relativity (англ.) // Jahresbericht der Deutschen Mathematiker-Vereinigung. — 1912. — Vol. 21. — P. 103–127.
У этой статьи есть несколько проблем, помогите их исправить:
Необходимо проверить качество перевода c неуказанного языка, исправить содержательные и стилистические ошибки.
Пожалуйста, после исправления проблемы исключите её из списка параметров. После устранения всех недостатков этот шаблон может быть удалён любым участником.